Search within:

Engineering of an Ultra-thin Molecular Superconductor by Charge Transfer


Saw-Wai Hla and his collaborators have engineered an ultra-thin, nanometer scale organic superconductor. These miniaturized superconducting materials show promise in a wide variety of applications for electronic components and devices. Several potential uses for these new materials include SQUID and SMES devices, superconducting electromagnets, digital circuits, computer data and energy storage units.

Superconductor materials

These researchers found a striking structural transformation occurs when GaC14 is vacuum deposited on bis(ethylenedithio) tetraselenafulvalene (BETS) that has been pre-deposited on a Ag(I II) surface. Their fabrication method results in more structured and higher organized charge transfer state of an ultra-thin superconductor consisting of one molecular layer of BETS and molecular rows of GaCl 4.Superconductors are elements or compounds that conduct electricity without resistance below a certain threshold temperature (currently in the range of few degrees Kelvin). The possibility of using such materials at elevated temperatures can completely revolutionize our energy future, having the potential to offer unlimited savings in energy consumption, storage and transportation. From the time of its discovery, most efforts on superconductivity have been focused on engineering nanometer size superconducting devices having favorable temperature profiles. This effort succeeds in the potential miniaturization of such devices.

OU Ref: 09026 View PDF

Issued Patent:
US 9,362,476


Saw-Wai Hla, Ph.D. is a professor of physics and astronomy here at Ohio University’s Clippinger Laboratory. Dr. Hla has been working with semiconductor technologies for some time now and is currently working on bringing this technology to market. Licensing opportunities are available.