Ohio University

Jason Trembly

Jason   Trembly Profile Picture
Russ Professor of Mechanical Engineering, Director of the Institute for Sustainable Energy and the Environment
Stocker Center 251
Institute for Sustainable Energy and the Environment

Principal investigator for more than $18 million in competitively sponsored research, primarily for the U.S. Department of Energy , Dr. Jason Trembly is Russ Professor of Mechanical Engineering, and a graduate faculty member in the Department of Chemical and Biomolecular Engineering. He is also Director of Ohio University’s Institute for Sustainable Energy and the Environment..

Prior to joining OHIO in 2011 as an assistant professor, Trembly was a leading young researcher at internationally recognized energy research centers. From 2007 to 2011, he was a research chemical engineer and team leader for syngas and CO2 conversion at RTI International’s Energy Technology Division. There, he was responsible for ideation and development of processes and catalysts for conversion of syngas and CO2 into chemicals and fuels. He is also a former ORISE Fellow at the U.S. DOE’s National Energy Technology Laboratory, where he completed his graduate research focused on solid oxide fuel cell development.

Trembly’s research group utilizes process simulation with materials R&D to develop intensified process designs to address energy and environmental issues. His main research interests include solid oxide fuel cells and electrolyzers, electrochemical capture of nutrients from waste streams, produced water remediation, and sustainable composite materials.

Recent News:
Engineering researcher and team receive $2 million to create coal composites – Sept. 20, 2019
Engineering professor, alumnus named Russ Professor – March 25, 2019
Engineering faculty member receives $1 million in grants to remediate carbon dioxide and ethane – Jan. 22, 2019

Research Interests: thermocatalytic processes, supercritical fluid processes, solid oxide fuel cells, nutrient recovery

All Degrees Earned: Ph.D. Chemical Engineering, Ohio University (2007), M.S. Chemical Engineering, Ohio University (2004), B.S. Chemical Engineering, Ohio University (2003)

Journal Article, Academic Journal (21)

  • Tanim, T., Bayless, D., Trembly, J. Modeling of a 5 kWe tubular solid oxide fuel cell based system operating on desulfurized JP-8 fuel for auxiliary and mobile power applications.. Journal of Power Sources; 221: 387-396. http://www.journals.elsevier.com/journal-of-power-sources/.
  • Blondes, M., Trembly, J., Doolan, C., Chub, A., Chenault, J., Rowan, E., Haefner, R., Mailot, B. (2020). Utica Shale Play oil and gas wastewater composition: Implications for treatment and reuse. Environmental Science & Technology.
  • Able, C., Trembly, J. (2020). Advanced Supercritical Water-Based Process Concepts for Treatment and Beneficial Reuse of Brine in Oil/Gas Production will be published in Desalination. 481.
  • Spencer, M., Garlapalli, R., Trembly, J. (2019). Geochemical Phenomena between Utica-Point Pleasant Shale and Hydraulic Fracturing Fluid. AIChE Journal.
  • Al-Majali, Y., Chirume, C., Marcum, E., Daramola, D., Kappagantula, K., Trembly, J. (2019). Coal Filler Based Thermoplastic Composites as Construction Materials: A New Sustainable End-Use Application. ACS Journal of Sustainable Chemistry & Engineering; 7: 16870−16878.
  • Belarbi, Z., Trembly, J. (2018). Electrochemical Processing to Capture Phosphorus from Simulated Concentrated Animal Feeding Operations Waste. 13. Journal of the Electrochemical Society; 165: E685-E693. http://jes.ecsdl.org/content/165/13/E685.
  • Fan, W., Srisupan, M., Bryant, L., Trembly, J. (2018). Utilization of fly ash as pH adjustment for efficient immobilization and reutilization of nutrients from swine manure using hydrothermal treatment. Waste Management; 79: 709-716. http://www.sciencedirect.com/science/article/pii/S0956053X18305282.
  • Garlapalli, R., Spencer, M., Alam, K., Trembly, J. (2018). Integration of Heat Recovery Unit in Coal Fired Power Plants to Reduce Energy Cost of Carbon-dioxide Capture. Applied Energy; 229: 900-909. http://doi.org/10.1016/j.apenergy.2018.08.031.
  • Able, C., Ogden, D., Trembly, J. (2018). Sustainable management of hypersaline brine waste: Zero liquid discharge via Joule-heating at supercritical condition. Desalination; 444: 84-93. http://doi.org/10.1016/j.desal.2018.07.014.
  • Chen, X., Tao, P., Li, T., Trembly, J., Liu, X. (2018). Zinc removal from model wastewater by electrocoagulation: Processing, kinetics and mechanism. October 2018. Chemical Engineering Journal; 349: 358-367. http://doi.org/10.1016/j.cej.2018.05.099.
  • Phillips, L., Kappagantula, K., Trembly, J. (2017). Mechanical Performance of Thermoplastic Composites using Bituminous Coal as Filler: Study of a Potentially Sustainable End-use Application for Appalachian Coal. 2. Polymer Composites; 40: http://doi.org/10.1002/pc.24696.
  • Fan, W., Bryant, L., Srisupan, M., Trembly, J. (2017). An Assessment of Hydrothermal Treatment of Dairy Waste as a Tool for a Sustainable Phosphorus Supply Chain in Comparison to Commercial Phosphatic Fertilizers. 7/2018. Clean Technologies and Environmental Policy; http://doi.org/10.1007/s10098-017-1440-z.
  • Ogden, D., Trembly, J. (2017). Desalination of hypersaline brines via Joule-heating: Experimental investigations and comparison of results to existing models. Desalination; 424: 149-158. http://doi.org/10.1016/j.desal.2017.10.006.
  • Dong, X., Trembly, J., Bayless, D. (2017). Techno-economic analysis of hydraulic fracking flowback and produced water treatment in supercritical water reactor. Energy; 133: 777-783. http://doi.org/10.1016/j.energy.2017.05.078.
  • Lopez, D., Trembly, J. (2017). Desalination of Hypersaline Brines with Joule-Heating and Chemical Pre-treatment: Conceptual Design and Economics. Desalination; 415: 49-57. http://doi.org/10.1016/j.desal.2017.04.003.
  • De Silva, C., Garlapalli, R., Trembly, J. (2016). Removal of Phenol from Oil/Gas Produced Water Using Supercritical Water Treatment with TiO2 Supported MnO2 Catalyst. Journal of Environmental Chemical Engineering; http://doi.org/10.1016/j.jece.2016.12.015.
  • Fan, W., Liberati, B., Novak, M., Cooper, M., Kruse Daniels, N., Young, D., Trembly, J. (2016). Radium-226 Removal from Simulated Produced Water Using Natural Zeolite and Ion-Exchange Resin. 48. Industrial & Engineering Chemistry Research; 55: 12502--12505.
  • Trembly, J. (2016). Radium-226 Removal from Simulated Produced Water Using Natural Zeolite and Ion-Exchange Resin. Industrial & Engineering Chemistry Research; 55: 12501-12505. http://pubs.acs.org/doi/pdf/10.1021/acs.iecr.6b03230.
  • Kuriger, R., Young, D., Mackenzie, M., Sarv, H., Trembly, J. (2016). Phase Analysis of Scale Deposition in Boiler Tubes Utilizing Steam-Assisted-Gravity-Drainage Produced Water. March 2017. Journal of Thermal Science and Engineering Applications; 9: 1-12. http://thermalscienceapplication.asmedigitalcollection.asme.org/article.aspx?articleid=2551805&resultClick=3.
  • Tanim, T., Bayless, D., Trembly, J. (2013). Modeling a 5 kWe planar solid oxide fuel cell based system operating on JP-8 fuel and a comparison with tubular cell based system for auxiliary and mobile power applications. Journal of Power Sources; 245: 986-997. http://doi.org/10.1016/j.jpowsour.2013.07.008.
  • Tanim, T., Bayless, D., Trembly, J. (2012). Modeling of a 5 kWe tubular solid oxide fuel cell based system operating on desulfurized JP-8 fuel for auxiliary and mobile power applications.. Journal of Power Sources; 221: 387-396. http://doi.org/10.1016/j.jpowsour.2012.08.024.

Patent (4)

  • Trembly, J.
  • Trembly, J. Technique for Removal of Organics and Dissolved Solids from Aqueous Medias via Supercritical Treatment . US 9,950,939 B2.
  • Trembly, J. Vessel Design for Seperation of Precipitated Solids From Supercritical Fluids. 14/373,778 .
  • Bayless, D., Trembly, J. Solid Oxide Fuel Cell and Apparatus. 8,057,951 .

Book, Chapter in Scholarly Book (1)

  • Trembly, J. (2014). Substitute Natural Gas Technology. Encyclopedia of Chemical Process Engineering.

Magazine/Trade Publication (1)

  • Trembly, J. (2019). Greenhouse gases and the role of Ohio engineering. 1. Ohio Engineer; 79.

Report (1)

  • Melnyk, M., Trembly, J., Manivannan, V. (2018). DEVELOPING MODELING AND SIMULATION CAPABILITY FOR FUEL CELL SYSTEM LEVEL INTEGRATION. Naval Air Warfare Center Aircraft Division.