Search within:

Tingyue Gu

Tingyue Gu
Professor, Chemical and Biomolecular Engineering (grad faculty in ChE, BME, BIOS, MCB)
Stocker Center 167B
Biomedical Engineering
Institute for Corrosion and Multiphase Technology

Internationally known for his work on chromatography modeling and scale-up, Tingyue Gu authored the chromatography simulation package Chromulator, used by dozens of university researchers in more than thirty countries, and by several major pharmaceutical and biotech companies. He also has carried out research in protein purification, as well as in fungal and bacterial fermentation.

Since 2002, Gu has focused on biofilms and microbiologically influenced corrosion (MIC) and biofouling. He is specifically interested in MIC mechanism, biofilm ecology, MIC and biofilm sensors, electrochemical methods for MIC, enhanced biocide treatment, and mechanistic modeling and prediction of MIC. He pioneered the use of organic carbon starvation and electron mediator in MIC mechanism studies and in identifying MIC types in MIC science research. He is the developer of the world's first truly mechanistic model for MIC prediction (currently version 2 covering both pitting and uniform corrosion rates, biocide treatment and many other effects). He leads the MIC-JIP research program at the Institute for Corrosion and Multiphase Technology. He has developed a disposable biofilm/MIC sensor kit for field uses. He is also developing a convenient and high-throughput method for screening antimicrobials against medical and environmental biofilms to provide efficacies for biofilm prevention and biofilm kill with transient information.

He is an associate editor of Bioprocess and Biosystems Engineering (Springer), and an editor-in-chief of Bioresources and Bioprocessing (Springer).

Research Interests: Microbiologically influenced corrosion, antimicrobial treatment of environmental and medical biofilms, biofilm treatment, microbial electron transfer, biofilm/biocorrosion sensor, bioleaching, bioremediation, biomass utilization, and bioseparations

All Degrees Earned: Ph.D., Chemical Engineering, Purdue University, August 1990. BS, Chemical Engineering, Zhejiang University, May 1985

Journal Article, Academic Journal (197)

  • Wang, D., Wang, Y., Wu, H., Li, Z., Wu, Y., Liu, B., Tian, Z., Li, X., Xu, D., Peng, L., Yan, J., Gu, T., Wang, F. (2024). Eco-friendly bifunctional antibacterial and anticorrosion broad-spectrum rosin thiourea iminazole quaternary ammonium salt against microbiologically influenced corrosion. Corrosion Science (IF 8.3); 229: 111847. https://www.sciencedirect.com/science/article/pii/S0010938X24000313.
  • Xu, L., Kijkla, P., Kumseranee, S., Punpruk, S., Gu, T. (2024). “Corrosion-resistant” chromium steels for oil and gas pipelines can suffer from very severe pitting corrosion by a sulfate reducing bacterium. Journal of Materials Science & Technology (IF 10.9); 174: 23-29. https://doi.org/10.1016/j.jmst.2023.01.008.
  • Li, Z., Yang, J., Lu, S., Dou, W., Gu, T. (2024). Stress corrosion cracking failure of X80 carbon steel U-bend caused by Desulfovibrio vulgaris biocorrosion. Journal of Materials Science & Technology (IF 10.9); 174 : 95-105. https://doi.org/10.1016/j.jmst.2023.07.032.
  • Lu, S., Zhu, H., Sun, J., Gu, T., Xue, N., Chen, S., Liu, G., Dou, W. (2024). Eutrophication of seawater intensified biocorrosion of copper caused by Desulfovibrio vulgaris biofilm. Journal of Materials Science & Technology (IF 10.9); 194 : 110-123. https://www.sciencedirect.com/science/article/pii/S1005030224002081.
  • Alrammah, F., Xu, L., Patel, N., Kontis, N., Rosado, A., Gu, T. (2024). Conductive magnetic nanowires accelerated electron transfer between C1020 carbon steel and Desulfovibrio vulgaris biofilm. Science of The Total Environment (IF 9.8); 925: 171763. https://www.sciencedirect.com/science/article/pii/S0048969724019065.
  • Moradi, M., Gao, Y., Narenkumar, J., Fan, Y., Gu, T., Carmona-Martinez, A., Xu, D., Wang, F. (2024). Filamentous marine Gram-positive Nocardiopsis dassonvillei biofilm as biocathode and its electron transfer mechanism. The Science of the total environment (IF 9.8); 908: 168347. https://doi.org/10.1016/j.scitotenv.2023.168347.
  • Li, Z., Yang, J., Lu, S., Dou, W., Gu, T. (2024). Mitigation of Desulfovibrio ferrophilus IS5 degradation of X80 carbon steel mechanical properties using a green biocide. Biodegradation (IF 3.6) (In press and online with view only ShareIt Link: https://rdcu.be/dwKZM); https://doi.org/10.1007/s10532-023-10063-0.
  • Li, Z., Ren, Y., Li, Z., Zhang, J., Fan, Y., Jiang, G., Xu, D., Gu, T., Wang, F. (2023). Engineered Living Biofilm with Enhanced Metal Binding Ability for Corrosion Protection in Seawater. Advanced Functional Materials (IF 19.0); 2313120 (accepted and online) . https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202313120.
  • Xu, Z., Zhang, T., Wan, H., Liu, H., Gu, T., Liu, H. (2023). Accelerated development of Ti-6Al-4V microbial corrosion triggered by electroactive sulfate-reducing Desulfovibrio ferrophilus biofilm in enriched artificial seawater containing soluble electron shuttle. Corrosion Science (IF 8.3); 220: 111306. https://www.sciencedirect.com/science/article/pii/S0010938X23003487.
  • Zhang, X., Shi, H., Tan, N., Zhu, M., Tan, W., Daramola, D., Gu, T. (2023). Advances in bioleaching of waste lithium batteries under metal ion stress. Bioresources and Bioprocessing (IF 4.6); 10: 19. https://doi.org/10.1186/s40643-023-00636-5.
  • Kartsonakis, I., Saji, V., Tziveleka, L., Singh, R., Blackwood, D., Gu, T. (2023). Editorial: Biofouling, biocorrosion and biodeterioration: Recent advancements. Frontiers in Bioengineering and Biotechnology (IF 5.7); 11: 1144671. https://www.frontiersin.org/articles/10.3389/fbioe.2023.1144671.
  • Liu, T., Guo, Z., Chen, S., Xu, D., Gu, T. (2023). Editorial: Interactions of Microbial Biofilms with Advanced Materials. Frontiers in Microbiology (IF 5.2); 14: 1260753. https://www.frontiersin.org/articles/10.3389/fmicb.2023.1260753/full.
  • Jin, Y., Li, J., Zhang, M., Zheng, B., Xu, D., Gu, T., Wang, F. (2023). Effect of exogenous flavins on the microbial corrosion by Geobacter sulfurreducens via iron-to-microbe electron transfer. Journal of Materials Science & Technology (IF 10.9); https://www.sciencedirect.com/science/article/pii/S1005030223005868.
  • Jin, Y., Li, J., Ueki, T., Zheng, B., Fan, Y., Yang, C., Li, Z., Di Wang, ., Xu, D., Gu, T., Wang, F. (2023). Electrically conductive nanowires controlled one pivotal route in energy harvest and microbial corrosion via direct metal-microbe electron transfer. Journal of Materials Science & Technology (IF 10.9); https://www.sciencedirect.com/science/article/pii/S100503022300600X.
  • Lu, S., Dou, W., Gu, T., Chen, S., Cheng, X., Hou, R., Wang, Y., Zhang, Y., Liu, G. (2023). Extracellular electron transfer corrosion mechanism of two marine structural steels caused by nitrate reducing Halomonas titanicae. Corrosion Science (IF 8.3); 217: 111125. https://www.sciencedirect.com/science/article/pii/S0010938X23001671.
  • Li, Z., Yang, J., Lu, S., Dou, W., Gu, T. (2023). Impact of Desulfovibrio ferrophilus IS5 biocorrosion time on X80 carbon steel mechanical property degradation. Journal of Materials Research and Technology (IF 6.4); 27: 3777–3787. https://www.sciencedirect.com/science/article/pii/S223878542302745X.
  • Xu, D., Gu, T., Lovley, D. (2023). Microbially mediated metal corrosion. Nature Reviews Microbiology (IF 88.1); 21: 705–718. https://www.nature.com/articles/s41579-023-00920-3.
  • Wang, D., Yang, C., Zheng, B., Yang, M., Gao, Y., Jin, Y., Dong, Y., Liu, P., Zhang, M., Zhou, E., Gu, T., Xu, D., Wang, F. (2023). Microbiologically influenced corrosion of CoCrFeMnNi high entropy alloy by sulfate-reducing bacterium Desulfovibrio vulgaris. Corrosion Science (IF 8.3); 111429. https://www.sciencedirect.com/science/article/pii/S0010938X23004717.
  • Chen, G., Shi, H., Ding, H., Zhang, X., Gu, T., Zhu, M., Tan, W. (2023). Multi-scale analysis of nickel ion tolerance mechanism for thermophilic Sulfobacillus thermosulfidooxidans in bioleaching. Journal of Hazardous Materials (IF 13.6); 443: 130245. https://www.sciencedirect.com/science/article/pii/S0304389422020398.
  • Li, Z., Yang, J., Lu, S., Gu, T. (2023). X80 U-bend stress corrosion cracking (SCC) crack tip dissolution by fast corroding Desulfovibrio ferrophilus IS5 biofilm. Process Safety and Environmental Protection (IF 7.8); 178: 56-64. https://doi.org/10.1016/j.psep.2023.08.012.
  • Unsal, T., Xu, L., Jia, R., Kijkla, P., Kumseranee, S., Punpruk, S., Mohamed, M., Saleh, M., Gu, T. (2023). Microbiologically influenced corrosion of titanium by Desulfovibrio vulgaris biofilm under organic carbon starvation. Bioelectrochemistry (IF 5.0); 149: 108307. https://www.sciencedirect.com/science/article/pii/S1567539422002584.
  • Xu, L., Kijkla, P., Kumseranee, S., Punpruk, S., Gu, T. (2023). Electrochemical assessment of mitigation of Desulfovibrio ferrophilus IS5 corrosion against N80 carbon steel and 26Cr3Mo steel using a green biocide enhanced by a nature-mimicking biofilm-dispersing peptide. Antibiotics (IF 4.8); 12: 1194. https://doi.org/10.3390/antibiotics12071194.
  • Xu, L., Ivanova, S., Gu, T. (2023). Mitigation of galvanized steel biocorrosion by Pseudomonas aeruginosa biofilm using a biocide enhanced by trehalase . Bioelectrochemistry (IF 5.0); 154: 108508. https://doi.org/10.1016/j.bioelechem.2023.108508.
  • Sobhani, D., Rastegar, S., Khamforoush, M., Gu, T., Khosravi, A. (2023). Copper recovery from printed circuit boards leaching solution with bioelectricity generation using microbial fuel cell. Bioprocess and Biosystems Engineering (IF 3.8); 46: 1021–1031. https://doi.org/10.1007/s00449-023-02881-6.
  • Wan, H., Zhang, T., Wang, J., Rao, Z., Zhang, Y., Li, G., Gu, T., Liu, H. (2023). Effect of alloying element content on anaerobic microbiologically influenced corrosion sensitivity of stainless steels in enriched artificial seawater. Bioelectrochemistry (IF 5.0); 150: 108367. https://www.sciencedirect.com/science/article/pii/S156753942300004X.
  • Li, Z., Wang, X., Wang, J., Yuan, X., Jiang, X., Wang, Y., Zhong, C., Xu, D., Gu, T., Wang, F. (2022). Bacterial biofilms as platforms engineered for diverse applications. Biotechnology Advances (IF 16.0); 57: 107932 . https://www.sciencedirect.com/science/article/pii/S0734975022000283.
  • Dou, W., Pu, Y., Gu, T., Chen, S., Chen, Z., Xu, Z. (2022). Biocorrosion of copper by nitrate reducing Pseudomonas aeruginosa with varied headspace volume. International Biodeterioration & Biodegradation (IF 4.8); 171: 105405. https://www.sciencedirect.com/science/article/pii/S0964830522000336.
  • Zhou, E., Lekbach, Y., Gu, T., Xu, D. (2022). Bioenergetics and extracellular electron transfer in microbial fuel cells and microbial corrosion. Current Opinion in Electrochemistry (IF 8.5); 31: 100830 . https://www.sciencedirect.com/science/article/pii/S2451910321001447.
  • Wang, D., Yang, C., Saleh, M., Alotaibi, M., Mohamed, M., Xu, D., Gu, T. (2022). Conductive magnetite nanoparticles considerably accelerated carbon steel corrosion by electroactive Desulfovibrio vulgaris biofilm. Corrosion Science (IF 8.3); 205: 110440. https://doi.org/10.1016/j.corsci.2022.110440.
  • Zhou, E., Li, F., Zhang, D., Xu, D., Li, Z., Jia, R., Jin, Y., Song, H., Li, H., Wang, Q., Wang, J., Li, X., Gu, T., Homborg, A., Mol, J., Smith, J., Wang, F., Lovley, D. (2022). Direct microbial electron uptake as a mechanism for stainless steel corrosion in aerobic environments. Water Research (IF 12.8); 118553 . https://www.sciencedirect.com/science/article/pii/S0043135422005061.
  • Li, Z., Yang, J., Guo, H., Kumseranee, S., Punpruk, S., Mohamed, M., Saleh, M., Gu, T. (2022). Mechanical property degradation of X80 pipeline steel due to microbiologically influenced corrosion caused by Desulfovibrio vulgaris. Frontiers in Bioengineering and Biotechnology (IF 5.7); 10: 1028462. https://www.frontiersin.org/articles/10.3389/fbioe.2022.1028462.
  • Wang, D., Unsal, T., Kumseranee, S., Punpruk, S., Saleh, M., Alotaibi, M., Xu, D., Gu, T. (2022). Mitigation of carbon steel biocorrosion using a green biocide enhanced by a nature-mimicking anti-biofilm peptide in a flow loop. Bioresources and Bioprocessing (IF 4.6); 9: 67. https://doi.org/10.1186/s40643-022-00553-z.
  • Wang, J., Liu, H., Mohamed, M., Saleh, M., Gu, T. (2022). Mitigation of sulfate reducing Desulfovibrio ferrophilus microbiologically influenced corrosion of X80 using THPS biocide enhanced by Peptide A. Journal of Materials Science & Technology (IF 10.9); 107: 43-51. https://doi.org/10.1016/j.jmst.2021.07.039.
  • Wang, D., Hall, T., Gu, T. (2022). Preliminary proof-of-concept testing of novel antimicrobial heat-conducting “metallic” coatings against biofouling and biocorrosion. Frontiers in Microbiology (IF 5.2); 13: 899364. https://doi.org/10.3389/fmicb.2022.899364.
  • Liu, D., Shi, H., Chen, G., Zhang, X., Gu, T., Zhu, M., Tan, W. (2022). Strategies for Anti-oxidative Stress and Anti-acid Stress in Bioleaching of LiCoO2 using an Acidophilic Microbial Consortium . Extremophiles (IF 2.9); 26: 22. https://doi.org/10.1007/s00792-022-01270-3.
  • Wang, D., Kijkla, P., Saleh, M., Kumseranee, S., Punpruk, S., Gu, T. (2022). Tafel scan schemes for microbiologically influenced corrosion of carbon steel and stainless steel. Journal of Materials Science & Technology (IF 10.9); 130: 193-197. https://www.sciencedirect.com/science/article/pii/S1005030222004698.
  • Gao, Y., Zhang, M., Fan, Y., Li, Z., Cristiani, P., Chen, X., Xu, D., Wang, F., Gu, T. (2022). Marine Vibrio spp. protect carbon steel against corrosion through secreting extracellular polymeric substances. npj Materials Degradation (IF 5.1); 6: 6. https://doi.org/10.1038/s41529-021-00212-2.
  • Unsal, T., Wang, D., Kijkla, P., Kumseranee, S., Punpruk, S., Mohamed, M., Saleh, M., Gu, T. (2022). Food-grade D-limonene enhanced a green biocide in the mitigation of carbon steel biocorrosion by a mixed-culture biofilm consortium. Bioprocess and Biosystems Engineering (IF 3.8); 45: 669–678. https://doi.org/10.1007/s00449-021-02685-6.
  • Wang, D., Ivanova, S., Hahn, R., Gu, T. (2022). Evaluation of trehalase as an enhancer for a green biocide in the mitigation of Desulfovibrio vulgaris biocorrosion of carbon steel. Bioprocess and Biosystems Engineering (IF 3.8); 45: 659–667. https://doi.org/10.1007/s00449-021-02684-7.
  • Wang, D., Kijkla, P., Mohamed, M., Saleh, M., Kumseranee, S., Punpruk, S., Gu, T. (2021). Aggressive corrosion of carbon steel by Desulfovibrio ferrophilus IS5 biofilm was further accelerated by riboflavin. Bioelectrochemistry (IF 5.0); 142: 107920. https://www.sciencedirect.com/science/article/pii/S1567539421001833.
  • Unsal, T., Wang, D., Kumseranee, S., Punpruk, S., Mohamed, M., Saleh, M., Gu, T. (2021). Assessment of 2,2-Dibromo-3-Nitrilopropionamide Biocide Enhanced by D-Tyrosine against Zinc Corrosion by a Sulfate Reducing Bacterium. Industrial & Engineering Chemistry Research (IF 4.2); 60: 4009-4018. https://doi.org/10.1021/acs.iecr.0c06317.
  • Pirsaheb, M., Zadsar, S., Rastegar, S., Gu, T., Hossini, H. (2021). Bioleaching and ecological toxicity assessment of carbide slag waste using Acidithiobacillus bacteria. Environmental Technology & Innovation (IF 7.1); 22: 101480. https://www.sciencedirect.com/science/article/pii/S2352186421001280.
  • Li, Z., Yang, J., Guo, H., Kumseranee, S., Punpruk, S., Mohamed, M., Saleh, M., Gu, T. (2021). Carbon Source Starvation of a Sulfate-Reducing Bacterium–Elevated MIC Deterioration of Tensile Strength and Strain of X80 Pipeline Steel. Frontiers in Materials (IF 3.2); 8: 536. https://www.frontiersin.org/article/10.3389/fmats.2021.794051.
  • Wang, D., Jia, R., Kumseranee, S., Punpruk, S., Gu, T. (2021). Comparison of 304 and 316 stainless steel microbiologically influenced corrosion by an anaerobic oilfield biofilm consortium. Engineering Failure Analysis (IF 4.0); 122: 105275. http://www.sciencedirect.com/science/article/pii/S1350630721000637.
  • Li, M., Zhou, M., Tian, X., Tan, C., Gu, T. (2021). Enhanced bioenergy recovery and nutrient removal from swine wastewater using an airlift-type photosynthetic microbial fuel cell. Energy (IF 9.0); 226: 120422. https://www.sciencedirect.com/science/article/pii/S036054422100671X.
  • Kijkla, P., Wang, D., Mohamed, M., Saleh, M., Kumseranee, S., Punpruk, S., Gu, T. (2021). Glutaraldehyde Enhancement by D-limonene for Mitigating Biocorrosion of Carbon Steel by An Oilfield Biofilm Consortium. World Journal of Microbiology and Biotechnology (IF 4.1); 37: 174. https://link.springer.com/article/10.1007%2Fs11274-021-03134-y.
  • Ozairy, R., Rastegar, S., Beigzadeh, R., Gu, T. (2021). Optimization of metal bio-acid leaching from mobile phone printed circuit boards using natural organic acids and H2O2. Journal of Material Cycles and Waste Management (IF 3.1); 24: 179–188. https://link.springer.com/article/10.1007%2Fs10163-021-01302-8.
  • Li, Z., Wang, J., Dong, Y., Xu, D., Zhang, X., Wu, J., Gu, T., Wang, F. (2021). Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy. Journal of Materials Science & Technology (IF 10.9); 71: 177-185. https://www.sciencedirect.com/science/article/pii/S1005030220307908.
  • Hosseinzadeh, F., Rastegar, S., Ashengroph, M., Gu, T. (2021). Ultrasound-assisted Fenton-like reagent to leach precious metals from spent automotive catalysts: process optimization and kinetic modeling. International Journal of Environmental Science and Technology (IF 3.1); 18: 1-10. https://doi.org/10.1007/s13762-021-03324-z.
  • Wang, D., Unsal, T., Kumseranee, S., Punpruk, S., Mohamed, M., Saleh, M., Gu, T. (2021). Sulfate reducing bacterium Desulfovibrio vulgaris caused severe microbiologically influenced corrosion of zinc and galvanized steel. International Biodeterioration & Biodegradation (IF 4.8); 157: 105160. http://www.sciencedirect.com/science/article/pii/S096483052031091X.
  • Li, Z., Chang, W., Cui, T., Xu, D., Zhang, D., Lou, Y., Qian, H., Song, H., Mol, A., Cao, F., Gu, T., Li, X. (2021). Adaptive bidirectional extracellular electron transfer during accelerated microbiologically influenced corrosion of stainless steel. Communications Materials (IF to appear in 2024); 2: 67. https://www.nature.com/articles/s43246-021-00173-8.
  • Wang, J., Liu, H., Kijkla, P., Kumseranee, S., Punpruk, S., El-Said Mohamed, M., Saleh, M., Gu, T. (2021). Comparison of 304 SS, 2205 SS, and 410 SS Corrosion by Sulfate-Reducing Desulfovibrio ferrophilus. Journal of Chemistry (IF 3.0); 2021: 3268404. https://doi.org/10.1155/2021/3268404.
  • Unsal, T., Wang, D., Kumseranee, S., Punpruk, S., Gu, T. (2021). D-tyrosine enhancement of microbiocide mitigation of carbon steel corrosion by a sulfate reducing bacterium biofilm. World Journal of Microbiology and Biotechnology (IF 4.1); 37: 103. https://link.springer.com/article/10.1007/s11274-021-03072-9.
  • Gu, T., Wang, D., Lekbach, Y., Xu, D. (2021). Extracellular electron transfer in microbial biocorrosion. Current Opinion in Electrochemistry (IF 8.5); 29: 100763. https://www.sciencedirect.com/science/article/pii/S2451910321000776.
  • Tang, H., Yang, C., Ueki, T., Pittman, C., Xu, D., Woodard, T., Holmes, D., Gu, T., Wang, F., Lovley, D. (2021). Stainless steel corrosion via direct iron-to-microbe electron transfer by Geobacter species. The ISME Journal (IF 11.0); 15: 3084–3093. https://doi.org/10.1038/s41396-021-00990-2.
  • Wu, W., Li, X., Zhang, X., Gu, T., Qiu, Y., Zhu, M., Tan, W. (2020). Characteristics of oxidative stress and antioxidant defenses by a mixed culture of acidophilic bacteria in response to Co2+ exposure. Extremophiles (IF 2.9); 24: 485–499. https://link.springer.com/content/pdf/10.1007/s00792-020-01170-4.pdf.
  • Dou, W., Pu, Y., Han, X., Song, Y., Chen, S., Gu, T. (2020). Corrosion of Cu by a sulfate reducing bacterium in anaerobic vials with different headspace volumes. Bioelectrochemistry (IF 5.0); 133: 107478. http://www.sciencedirect.com/science/article/pii/S1567539419306929.
  • Wang, D., Liu, J., Jia, R., Dou, W., Kumseranee, S., Punpruk, S., Li, X., Gu, T. (2020). Distinguishing Two Different Microbiologically Influenced Corrosion (MIC) Mechanisms Using an Electron Mediator and Hydrogen Evolution Detection. Corrosion Science (IF 8.3); 177: 108993. http://www.sciencedirect.com/science/article/pii/S0010938X20310775.
  • Wang, J., Zhang, T., Zhang, X., Asif, M., Jiang, L., Dong, S., Gu, T., Liu, H. (2020). Inhibition effects of benzalkonium chloride on Chlorella vulgaris induced corrosion of carbon steel. Journal of Materials Science & Technology (IF 10.9); 43: 14-20. http://www.sciencedirect.com/science/article/pii/S1005030220300128.
  • Li, L., Han, Z., Zeng, R., Qi, W., Zhai, X., Yang, Y., Lou, Y., Gu, T., Xu, D., Duan, J. (2020). Microbial ingress and in vitro degradation enhanced by glucose on bioabsorbable Mg–Li–Ca alloy. Bioactive Materials (IF 18.9); 5: 902 - 916. http://www.sciencedirect.com/science/article/pii/S2452199X20301122.
  • Yu, S., Lou, Y., Zhang, D., Zhou, E., Li, Z., Du, C., Qian, H., Xu, D., Gu, T. (2020). Microbiologically influenced corrosion of 304 stainless steel by nitrate reducing Bacillus cereus in simulated Beijing soil solution. Bioelectrochemistry (IF 5.0); 133: 107477. http://www.sciencedirect.com/science/article/pii/S1567539419302270.
  • Pu, Y., Dou, W., Gu, T., Tang, S., Han, X., Chen, S. (2020). Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa. Journal of Materials Science & Technology (IF 10.9); 47: 10 - 19. http://www.sciencedirect.com/science/article/pii/S1005030220301353.
  • Wang, D., Ramadan, M., Kumseranee, S., Punpruk, S., Gu, T. (2020). Mitigating microbiologically influenced corrosion of an oilfield biofilm consortium on carbon steel in enriched hydrotest fluid using 2,2-dibromo-3-nitrilopropionamide (DBNPA) enhanced by a 14-mer peptide. Journal of Materials Science & Technology (IF 10.9); 57: 146-152. http://www.sciencedirect.com/science/article/pii/S1005030220304394.
  • Liu, X., Liu, H., Wu, W., Zhang, X., Gu, T., Zhu, M., Tan, W. (2020). Oxidative Stress Induced by Metal Ions in Bioleaching of LiCoO2 by an Acidophilic Microbial Consortium. Frontiers in Microbiology (IF 5.2); 10: 3058. https://www.frontiersin.org/article/10.3389/fmicb.2019.03058.
  • Yang, D., Jia, R., Abd Rahman, H., Gu, T. (2020). Preliminary investigation of utilization of a cellulose-based polymer used in enhanced oil recovery by oilfield anaerobic microbes and its impact on carbon steel corrosion. Corrosion (IF 1.6); 76: 766–772. https://doi.org/10.5006/3476.
  • Esmaeili, M., Rastegar, S., Beigzadeh, R., Gu, T. (2020). Ultrasound-assisted leaching of spent lithium ion batteries by natural organic acids and H2O2. Chemosphere (IF 8.8); 254: 126670. http://www.sciencedirect.com/science/article/pii/S0045653520308638.
  • Rahimi, G., Rastegar, S., Rahmani Chianeh, F., Gu, T. (2020). Ultrasound-assisted leaching of vanadium from fly ash using lemon juice organic acids. RSC Advances (IF 3.9); 10: 1685-1696. http://dx.doi.org/10.1039/C9RA09325G.
  • Dou, W., Xu, D., Gu, T. (2020). Biocorrosion caused by microbial biofilms is ubiquitous around us. Microbial Biotechnology (IF 5.7); 14: 803–805. https://doi.org/10.1111/1751-7915.13690.
  • Jia, R., Yang, D., Dou, W., Liu, J., Zlotkin, A., Kumseranee, S., Punpruk, S., Li, X., Gu, T. (2019). A sea anemone-inspired small synthetic peptide at sub-ppm concentrations enhanced biofilm mitigation. International Biodeterioration & Biodegradation (IF 4.8); 139: 78-85. http://www.sciencedirect.com/science/article/pii/S0964830518307637.
  • Liu, D., Jia, R., Xu, D., Yang, H., Zhao, Y., Khan, M., Huang, S., Wen, J., Yang, K., Gu, T. (2019). Biofilm inhibition and corrosion resistance of 2205-Cu duplex stainless steel against acid producing bacterium Acetobacter aceti. 11. Journal of Materials Science & Technology (IF 10.9); 35: 2494 - 2502. https://doi.org/10.1016/j.jmst.2019.05.048.
  • Li, M., Zhou, M., Luo, J., Tan, C., Tian, X., Su, P., Gu, T. (2019). Carbon dioxide sequestration accompanied by bioenergy generation using a bubbling-type photosynthetic algae microbial fuel cell. Bioresource Technology (IF 11.4); 280: 95 - 103. http://www.sciencedirect.com/science/article/pii/S0960852419302342.
  • Jia, R., Wang, D., Jin, P., Unsal, T., Yang, D., Yang, J., Xu, D., Gu, T. (2019). Effects of ferrous ion concentration on microbiologically influenced corrosion of carbon steel by sulfate reducing bacterium Desulfovibrio vulgaris. Corrosion Science (IF 8.3); 153: 127-137. http://www.sciencedirect.com/science/article/pii/S0010938X18317104.
  • Dou, W., Liu, J., Cai, W., Wang, D., Jia, R., Chen, S., Gu, T. (2019). Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation. Corrosion Science (IF 8.3); 150: 258-267. http://www.sciencedirect.com/science/article/pii/S0010938X18319607.
  • Unsal, T., Jia, R., Kumseranee, S., Punpruk, S., Gu, T. (2019). Laboratory investigation of microbiologically influenced corrosion of carbon steel in hydrotest using enriched artificial seawater inoculated with an oilfield biofilm consortium. Engineering Failure Analysis (IF 4.0); 100: 544-555. http://www.sciencedirect.com/science/article/pii/S1350630718311877.
  • Zhang, Y., Liu, M., Zhou, M., Yang, H., Liang, L., Gu, T. (2019). Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges. Renewable and Sustainable Energy Reviews (IF 15.9); 103: 13 - 29. http://www.sciencedirect.com/science/article/pii/S1364032118308220.
  • Jia, R., Unsal, T., Xu, D., Lekbach, Y., Gu, T. (2019). Microbiologically influenced corrosion and current mitigation strategies: A state of the art review. International Biodeterioration & Biodegradation (IF 4.8); 137: 42 - 58. http://www.sciencedirect.com/science/article/pii/S096483051830622X.
  • Liu, H., Meng, G., Li, W., Gu, T., Liu, H. (2019). Microbiologically Influenced Corrosion of Carbon Steel Beneath a Deposit in CO2-Saturated Formation Water Containing Desulfotomaculum nigrificans. Frontiers in Microbiology (IF 5.2); 10: 1298. https://www.frontiersin.org/article/10.3389/fmicb.2019.01298.
  • Lekbach, Y., Li, Z., Xu, D., Abed, S., Dong, Y., Liu, D., Gu, T., Koraichi, S., Yang, K., Wang, F. (2019). Salvia officinalis extract mitigates the microbiologically influenced corrosion of 304L stainless steel by Pseudomonas aeruginosa biofilm. Bioelectrochemistry (IF 5.0); 128: 193 - 203. http://www.sciencedirect.com/science/article/pii/S1567539419300052.
  • Wang, J., Hou, B., Xiang, J., Chen, X., Gu, T., Liu, H. (2019). The performance and mechanism of bifunctional biocide sodium pyrithione against sulfate reducing bacteria in X80 carbon steel corrosion. Corrosion Science (IF 8.3); 150: 296-308. http://www.sciencedirect.com/science/article/pii/S0010938X18311004.
  • Gu, T., Jia, R., Unsal, T., Xu, D. (2019). Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria. Journal of Materials Science & Technology (IF 10.9); 35: 631-636. http://www.sciencedirect.com/science/article/pii/S1005030218302871.
  • Zhou, E., Li, H., Yang, C., Wang, J., Xu, D., Zhang, D., Gu, T. (2018). Accelerated corrosion of 2304 duplex stainless steel by marine Pseudomonas aeruginosa biofilm. International Biodeterioration & Biodegradation (IF 4.8); 127: 1 - 9. https://www.sciencedirect.com/science/article/pii/S0964830517306121.
  • Gu, T., Rastegar, S., Mousavi, S., Li, M., Zhou, M. (2018). Advances in bioleaching for recovery of metals and bioremediation of solid wastes. Bioresource Technology (IF 11.88); 261: 428-440. https://www.sciencedirect.com/science/article/pii/S0960852418305467.
  • Jia, R., Yang, D., Rahman, H., Gu, T. (2018). An enhanced oil recovery polymer promoted microbial growth and accelerated microbiologically influenced corrosion against carbon steel. Corrosion Science (IF 8.3); 139: 301-308. https://www.sciencedirect.com/science/article/pii/S0010938X17314956.
  • Li, Y., Xu, D., Chen, C., Li, X., Jia, R., Zhang, D., Sand, W., Wang, F., Gu, T. (2018). Anaerobic Microbiologically Influenced Corrosion Mechanisms Interpreted Using Bioenergetics and Bioelectrochemistry: A Review. Journal of Materials Science & Technology (IF 10.9); 34: 1713-1718. https://www.sciencedirect.com/science/article/pii/S100503021830046X.
  • Liu, J., Jia, R., Zhou, E., Zhao, Y., Dou, W., Xu, D., Yang, K., Gu, T. (2018). Antimicrobial Cu-bearing 2205 duplex stainless steel against MIC by nitrate reducing Pseudomonas aeruginosa biofilm. International Biodeterioration & Biodegradation (IF 4.8); 132: 132-138. http://www.sciencedirect.com/science/article/pii/S096483051731586X.
  • Jia, R., Yang, D., Xu, D., Gu, T. (2018). Carbon steel biocorrosion at 80 °C by a thermophilic sulfate reducing archaeon biofilm provides evidence for its utilization of elemental iron as electron donor through extracellular electron transfer. Corrosion Science (IF 8.3); 145: 47-54. http://www.sciencedirect.com/science/article/pii/S0010938X1732053X.
  • Liu, H., Gu, T., Zhang, G., Liu, H., Cheng, Y. (2018). Corrosion of X80 pipeline steel under sulfate-reducing bacterium biofilms in simulated CO2-saturated oilfield produced water with carbon source starvation. Corrosion Science (IF 8.3); 136: 47-59. https://www.sciencedirect.com/science/article/pii/S0010938X17305437.
  • Jia, R., Tan, J., Jin, P., Blackwood, D., Xu, D., Gu, T. (2018). Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm. Corrosion Science (IF 8.3); 130: 1-11. https://www.sciencedirect.com/science/article/pii/S0010938X17312398.
  • Xu, J., Jia, R., Yang, D., Sun, C., Gu, T. (2018). Effects of D-Phenylalanine as a biocide enhancer of THPS against the microbiologically influenced corrosion of C1018 carbon steel. Journal of Materials Science & Technology (IF 10.9); 35: 109-117. http://www.sciencedirect.com/science/article/pii/S1005030218301877.
  • Huang, Y., Zhou, E., Jiang, C., Jia, R., Liu, S., Xu, D., Gu, T., Wang, F. (2018). Endogenous phenazine-1-carboxamide encoding gene PhzH regulated the extracellular electron transfer in biocorrosion of stainless steel by marine Pseudomonas aeruginosa. Electrochemistry Communications (IF 5.4); 94: 9 - 13. http://www.sciencedirect.com/science/article/pii/S1388248118301802.
  • Dou, W., Jia, R., Jin, P., Liu, J., Chen, S., Gu, T. (2018). Investigation of the mechanism and characteristics of copper corrosion by sulfate reducing bacteria. Corrosion Science (IF 8.3); 144: 237-248. http://www.sciencedirect.com/science/article/pii/S0010938X17322916.
  • Zhao, Y., Zhou, E., Xu, D., Yang, Y., Zhao, Y., Zhang, T., Gu, T., Yang, K., Wang, F. (2018). Laboratory investigation of microbiologically influenced corrosion of 2205 duplex stainless steel by marine Pseudomonas aeruginosa biofilm using electrochemical noise. Corrosion Science (IF 8.3); 143: 281-291. http://www.sciencedirect.com/science/article/pii/S0010938X17312672.
  • Li, M., Zhou, M., Tian, X., Tan, C., McDaniel, C., Hassett, D., Gu, T. (2018). Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnology Advances; 36: 1316-1327. https://www.sciencedirect.com/science/article/pii/S073497501830082X.
  • Dou, W., Wu, J., Gu, T., Wang, P., Zhang, D. (2018). Preparation of super-hydrophobic micro-needle CuO surface as a barrier against marine atmospheric corrosion. Corrosion Science (IF 8.3); 131: 156 - 163. http://www.sciencedirect.com/science/article/pii/S0010938X16305856.
  • Dong, Y., Jiang, B., Xu, D., Jiang, C., Li, Q., Gu, T. (2018). Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1. Bioelectrochemistry (IF 5.0); 123: 34–44. https://www.sciencedirect.com/science/article/pii/S1567539418300239.
  • Dou, W., Wang, P., Wu, J., Gu, T., Zhang, D. (2018). Strong acid resistance from electrochemical deposition of WO3 on super-hydrophobic CuO-coated copper surface. Materials and Corrosion (IF 1.8); 69: 978–984. http://onlinelibrary.wiley.com/doi/10.1002/maco.201709878/full.
  • Xu, D., Jia, R., Li, Y., Gu, T. (2017). Advances in the treatment of problematic industrial biofilms. World Journal of Microbiology and Biotechnology (IF 4.1); 33: 97. http://dx.doi.org/10.1007/s11274-016-2203-4.
  • Jia, R., Yang, D., Xu, D., Gu, T. (2017). Anaerobic corrosion of 304 stainless steel caused by the Pseudomonas aeruginosa biofilm. Frontiers in Microbiology (IF 5.2); 8: 2335. https://doi.org/10.3389/fmicb.2017.02335.
  • Zhao, Y., Zhou, E., Liu, Y., Liao, S., Li, Z., Xu, D., Zhang, T., Gu, T. (2017). Comparison of different electrochemical techniques for continuous monitoring of the microbiologically influenced corrosion of 2205 duplex stainless steel by marine Pseudomonas aeruginosa biofilm. Corrosion Science (IF 8.3); 126: 142-151. http://www.sciencedirect.com/science/article/pii/S0010938X1631383X.
  • Liu, H., Gu, T., Lv, Y., Asif, M., Xiong, F., Zhang, G., Liu, H. (2017). Corrosion inhibition and anti-bacterial efficacy of benzalkonium chloride in artificial CO2-saturated oilfield produced water. Corrosion Science (IF 8.3); 117: 24 - 34. http://www.sciencedirect.com/science/article/pii/S0010938X16303225.
  • Li, P., Zhao, Y., Liu, Y., Zhao, Y., Xu, D., Yang, C., Zhang, T., Gu, T., Yang, K. (2017). Effect of Cu Addition to 2205 Duplex Stainless Steel on the Resistance against Pitting Corrosion by the Pseudomonas aeruginosa Biofilm. Journal of Materials Science & Technology (IF 10.9); 33: 723-727. http://www.sciencedirect.com/science/article/pii/S1005030216302304.
  • Jia, R., Yang, D., Al-Mahamedh, H., Gu, T. (2017). Electrochemical Testing of Biocide Enhancement by a Mixture of D-Amino Acids for the Prevention of a Corrosive Biofilm Consortium on Carbon Steel. Industrial & Engineering Chemistry Research (IF 4.2); 56: 7640-7649. http://dx.doi.org/10.1021/acs.iecr.7b01534.
  • Jia, R., Yang, D., Xu, D., Gu, T. (2017). Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm. Bioelectrochemistry (IF 5.0); 118: 38 - 46. http://www.sciencedirect.com/science/article/pii/S156753941730169X.
  • Rastegar, S., Gu, T. (2017). Empirical correlations for axial dispersion coefficient and Peclet number in fixed-bed columns. Journal of Chromatography A (IF 4.1); 1490: 133–137. http://dx.doi.org/10.1016/j.chroma.2017.02.026.
  • Jia, R., Li, Y., Al-Mahamedh, H., Gu, T. (2017). Enhanced Biocide Treatments with D-amino Acid Mixtures against a Biofilm Consortium from a Water Cooling Tower. Frontiers in Microbiology (IF 5.2); 8: 1538. http://journal.frontiersin.org/article/10.3389/fmicb.2017.01538.
  • Li, P., Zhao, Y., Liu, B., Zeng, G., Zhang, T., Xu, D., Gu, H., Gu, T., Wang, F. (2017). Experimental testing and numerical simulation to analyze the corrosion failures of single well pipelines in Tahe oilfield. Engineering Failure Analysis (IF 4.0); 80: 112-122. http://www.sciencedirect.com/science/article/pii/S1350630716306252.
  • Jia, R., Yang, D., Rahman, H., Gu, T. (2017). Laboratory testing of enhanced biocide mitigation of an oilfield biofilm and its microbiologically influenced corrosion of carbon steel in the presence of oilfield chemicals. International Biodeterioration & Biodegradation (IF 4.8); 125: 116 - 124. http://www.sciencedirect.com/science/article/pii/S0964830517308508.
  • Li, H., Yang, C., Zhou, E., Yang, C., Feng, H., Jiang, Z., Xu, D., Gu, T., Yang, K. (2017). Microbiologically influenced corrosion behavior of S32654 super austenitic stainless steel in the presence of marine Pseudomonas aeruginosa biofilm. Journal of Materials Science & Technology (IF 10.9); 33: 1596-1603. http://www.sciencedirect.com/science/article/pii/S1005030217300671.
  • Jia, R., Yang, D., Xu, J., Xu, D., Gu, T. (2017). Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation. Corrosion Science (IF 8.3); 127: 1-9. http://www.sciencedirect.com/science/article/pii/S0010938X17300495.
  • Jia, R., Yang, D., Xu, D., Gu, T. (2017). Mitigation of a nitrate reducing Pseudomonas aeruginosa biofilm and anaerobic biocorrosion using ciprofloxacin enhanced by D-tyrosine. Scientific Reports (IF 4.6); 7: 6946. http://www.nature.com/articles/s41598-017-07312-7.
  • Jia, R., Yang, D., Li, Y., Xu, D., Gu, T. (2017). Mitigation of the Desulfovibrio vulgaris biofilm using alkyldimethylbenzylammonium chloride enhanced by D-amino acids. International Biodeterioration & Biodegradation (IF 4.8); 117: 97 - 104. http://www.sciencedirect.com/science/article/pii/S0964830516308162.
  • Liu, H., Gu, T., Asif, M., Zhang, G., Liu, H. (2017). The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria. Corrosion Science (IF 8.3); 114: 102 - 111. http://www.sciencedirect.com/science/article/pii/S0010938X16310186.
  • Sun, D., Xu, D., Yang, C., Shahzad, M., Sun, Z., Xia, J., Zhao, J., Gu, T., Yang, K., Wang, G. (2016). An investigation of the antibacterial ability and cytotoxicity of a novel Cu-bearing 317L stainless steel. Scientific Reports (IF 4.6); 6: 29244. http://www.nature.com/articles/srep29244.
  • Lou, Y., Lin, L., Xu, D., Yang, C., Liu, J., Zhao, Y., Gu, T., Yang, K. (2016). Antibacterial Ability of a Novel Cu-bearing 2205 Duplex Stainless Steel against Pseudomonas aeruginosa Biofilm in Artificial Seawater. International Biodeterioration & Biodegradation (IF 4.8); 110: 199–205. http://www.sciencedirect.com/science/article/pii/S0964830516300956.
  • Rastegar, S., Mousavi, S., Shojaosadati, S., Gu, T. (2016). Bioleaching of fuel-oil ash using Acidithiobacillus thiooxidans in shake flasks and a slurry bubble column bioreactor. RSC Advances (IF 3.9); 6: 21756-21764. http://pubs.rsc.org/en/content/articlelanding/2016/ra/c5ra24861b/unauth#!divAbstract.
  • Liu, H., Gu, T., Zhang, G., Cheng, Y., Liu, H. (2016). Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors. Corrosion Science (IF 8.3); 105: 149-160. http://www.sciencedirect.com/science/article/pii/S0010938X16300129.
  • Jiang, J., Xu, D., Xi, T., Shahzad, M., Khan, M., Zhao, J., Fan, X., Yang, C., Gu, T., Yang, K. (2016). Effects of aging time on intergranular and pitting corrosion behavior of Cu-bearing 304L stainless steel in comparison with 304L stainless steel. Corrosion Science (IF 8.3); 113: 46 - 56. http://www.sciencedirect.com/science/article/pii/S0010938X16309416.
  • Li, Y., Jia, R., Al-Mahamedh, H., Xu, D., Gu, T. (2016). Enhanced biocide mitigation of field biofilm consortia by a mixture of D-amino acids. Frontiers in Microbiology; 7: 896. http://journal.frontiersin.org/article/10.3389/fmicb.2016.00896/full.
  • Li, Y., Zhang, P., Cai, W., Rosenblatt, J., Raad, I., Xu, D., Gu, T. (2016). Glyceryl trinitrate and caprylic acid for the mitigation of the Desulfovibrio vulgaris biofilm on C1018 carbon steel. World Journal of Microbiology and Biotechnology (IF 4.1); February: 32-23. http://link.springer.com/article/10.1007/s11274-015-1968-1.
  • Da Sun, ., Xu, D., Yang, C., Chen, J., Shahzad, M., Sun, Z., Zhao, J., Gu, T., Yang, K., Wang, G. (2016). Inhibition of Staphylococcus aureus biofilm by a copper-bearing 317L-Cu stainless steel and its corrosion resistance. Materials Science and Engineering: C; 69: 744 - 750. http://www.sciencedirect.com/science/article/pii/S092849311630724X.
  • Li, H., Zhou, E., Zhang, D., Xu, D., Yang, C., Feng, H., Jiang, Z., Li, X., Gu, T., Yang, K. (2016). Investigation of microbiologically influenced corrosion of high nitrogen nickel-free stainless steel by Pseudomonas aeruginosa. Corrosion Science (IF 8.3); 111: 811-821. http://www.sciencedirect.com/science/article/pii/S0010938X1630289X.
  • Xu, D., Li, Y., Gu, T. (2016). Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry (IF 5.0); 110: 52–58. http://www.sciencedirect.com/science/article/pii/S1567539416300366.
  • Li, H., Zhou, E., Zhang, D., Xu, D., Xia, J., Yang, C., Feng, H., Jiang, Z., Li, X., Gu, T., Yang, K. (2016). Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm. Scientific Reports (IF 4.6); 6: 20190. http://www.nature.com/articles/srep20190.pdf.
  • Liu, H., Gu, T., Zhang, G., Cheng, Y., Wang, H., Liu, H. (2016). The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria. Corrosion Science (IF 8.3); 102: 93 - 102. http://www.sciencedirect.com/science/article/pii/S0010938X15300974.
  • Liu, H., Fu, C., Gu, T., Zhang, G., Lv, Y., Wang, H., Liu, H. (2015). Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water. Corrosion Science (IF 8.3); 100: 484-495. http://www.sciencedirect.com/science/article/pii/S0010938X1530055X.
  • Zhang, P., Xu, D., Li, Y., Yang, K., Gu, T. (2015). Electron Mediators Accelerate the Microbiologically Influenced Corrosion of 304 Stainless Steel. Bioelectrochemistry (IF 5.0); 101: 14–21. http://www.sciencedirect.com/science/article/pii/S1567539414000929.
  • Li, H., Xu, D., Li, Y., Feng, H., Liu, Z., Li, X., Gu, T., Yang, K. (2015). Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-reducing Bacterium Desulfovibrio vulgaris . PLoS ONE; 10 : e0136183. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136183.
  • Xia, J., Yang, C., Xu, D., Sun, D., Nan, L., Sun, Z., Li, Q., Gu, T., Yang, K. (2015). Laboratory Investigation of Microbiologically Influenced Corrosion (MIC) Resistance of a Novel Cu-bearing 2205 Duplex Stainless Steel in the Presence of an Aerobic Marine Pseudomonas aeruginosa Biofilm. Biofouling; 31: 481-492. http://www.tandfonline.com/eprint/E5TEnJAdte6KMSZUU9sJ/full#.VgKkd02FPCM.
  • Yang, H., Zhou, M., Liu, M., Yang, W., Gu, T. (2015). Microbial Fuel Cells for Biosensor Applications. Biotechnology Letters; 37: 2357-2364. http://link.springer.com/article/10.1007/s10529-015-1929-7.
  • Nan, L., Xu, D., Gu, T., Song, X., Yang, K. (2015). Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli. Materials Science & Engineering C: Materials for biological applications; 48: 228-234. http://www.sciencedirect.com/science/article/pii/S0928493114008029.
  • Xu, D., Gu, T. (2015). The War against Problematic Biofilms in the Oil and Gas Industry. Journal of Microbial & Biochemical Technology; 7: e124. http://doi.org/10.4172/1948-5948.1000e124.
  • Mehay, A., Gu, T. (2014). A General Rate Model of Ion-Exchange Chromatography for Investigating Ion-Exchange Behavior and Scale-up. Journal of Microbial & Biochemical Technology; 6: 216-222. https://sites.ohio.edu/gu/papers/2014-a-general-rate-model-of-ionexchange-chromatography-for-investigating-ionexchange-behavior-and-scaleup.pdf.
  • Xu, D., Gu, T. (2014). Carbon Source Starvation Triggered More Aggressive Corrosion Against Carbon Steel by the Desulfovibrio vulgaris Biofilm. International Biodeterioration & Biodegradation (IF 4.8); 91: 74–81 . http://www.sciencedirect.com/science/article/pii/S0964830514000730.
  • Fu, W., Li, Y., Xu, D., Gu, T. (2014). Comparing two different types of anaerobic copper biocorrosion by sulfate- and nitrate-reducing bacteria. Materials Performance, June; 66-70.
  • Xu, D., Li, Y., Gu, T. (2014). D-methionine as a biofilm dispersal signaling molecule enhanced tetrakis hydroxymethyl phosphonium sulfate mitigation of Desulfovibrio vulgaris biofilm and biocorrosion pitting. Materials and Corrosion; 65: 837–845. http://onlinelibrary.wiley.com/doi/10.1002/maco.201206894/full.
  • Zheng , B., Li, K., Liu, H., Gu, T. (2014). Effects of Magnetic Fields on Microbiologically Influenced Corrosion. Industrial & Engineering Chemistry Research (IF 4.2); 53: 48–54. http://pubs.acs.org/doi/abs/10.1021/ie402235j.
  • Gu, T. (2014). Theoretical Modeling of The Possibility of Acid Producing Bacteria Causing Fast Pitting Biocorrosion . Journal of Microbial & Biochemical Technology; 6: 68-74 . https://sites.ohio.edu/gu/papers/2014_Theoretical_Modeling_of_the_Possibility_of_Acid_Producing_Bacteria_Causing_Fast_Pitting_Biocorrosion.pdf.
  • Luo, J., Ma, G., Zhou, W., Su, Z., Gu, T. (2013). Comparison of Fully-Porous Beads and Cored Beads in Size Exclusion Chromatography for Protein Purification . Chemical Engineering Science; 102: 99-105. http://www.sciencedirect.com/science/article/pii/S000925091300537X.
  • Chi, M., He, H., Wang, H., Zhou, M., Gu, T. (2013). Graphite Felt Anode Modified by Electropolymerization of Nano-Polypyrrole to Improve Microbial Fuel Cell (MFC) Production of Bioelectricity. Journal of Microbial & Biochemical Technology; S12-004: 1-4.
  • Xu, D., Huang, W., Ruschau, G., Hornemann, J., Wen, J., Gu, T. (2013). Laboratory Investigation of MIC Threat Due to Hydrotest Using Untreated Seawater and Subsequent Exposure to Pipeline Fluids with and without SRB Spiking. Elsevier: Engineering Failure Analysis (IF 3.4.0); 28: 149-159. https://www.sciencedirect.com/science/article/pii/S1350630712002142.
  • Zhao, K., Gu, T., Cruz, I., Kopliku, A. (2013). Laboratory Investigation of Microbiologically Influenced Corrosion In Pipeline Hydrotest Using Seawater. Materials Performance; 52: 64-69.
  • Xu, D., Li, Y., Song, F., Gu, T. (2013). Laboratory Investigation of Microbiologically Influenced Corrosion of C1018 Carbon Steel by Nitrate Reducing Bacterium Bacillus licheniformis. Corrosion Science (IF 8.3); 77: 385–390. http://www.sciencedirect.com/science/article/pii/S0010938X13003545.
  • Zhou, M., Yang, J., Wang, H., Jin, T., Xu, D., Gu, T. (2013). Microbial Fuel Cells (MFCs) and Microbial Electrolysis Cells (MECs) for the Production of Bioelectricity and Biomaterials. Environmental Technology; 34: 1915-1928. https://doi.org/10.1080/09593330.2013.813951.
  • Gu, T., Iyer, G., Cheng, K. (2013). Parameter Estimation And Rate Model Simulation Of Partial Breakthrough Of Bovine Serum Albumin On A Column Packed With Large Q Sepharose Anion-Exchange Particles. . Separation and Purification Technology; 116: 319-326. https://www.sciencedirect.com/science/article/pii/S1383586613003614.
  • Gu, T., Held, M., Faik, A. (2013). Supercritical CO2 and Ionic Liquids for the Pretreatment of Lignocellulosic Biomass in Bioethanol Production. Environmental Technology; 34: 1735-1749. https://doi.org/10.1080/09593330.2013.809777.
  • Zhou, M., Gu, T. (2013). The Next Breakthrough in Microbial Fuel Cells and Microbial Electrolysis Cells for Bioenergy and Bioproducts. Journal of Microbial & Biochemical Technology; S12-003: 1-4. http://doi.org/10.4172/1948-5948.S12-003.
  • Wen, J., Xu, D., Gu, T., Raad, I. (2012). A green triple biocide cocktail consisting of a biocide, EDDS and methanol for the mitigation of planktonic and sessile SRB. World Journal of Microbiology and Biotechnology (IF 4.1); 28: 431-435. http://doi.org/10.1007/s11274-011-0832-1.
  • Xu, D., Li, Y., Gu, T. (2012). A synergistic D-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm. World Journal of Microbiology and Biotechnology (IF 4.1); 28: 3067-3074. https://link.springer.com/article/10.1007/s11274-012-1116-0.
  • Xu, D., Wen, J., Gu, T., Raad, I. (2012). Biocide Cocktail Consisting of Glutaraldehyde, Ethylene Diamine Disuccinate (EDDS), and Methanol for the Mitigation of Souring and Biocorrosion. Corrosion (IF 1.6); 68: 994-1002. https://corrosionjournal.org/doi/10.5006/0605?mobileUi=0.
  • Xu, D., Wen, J., Fu, W., Gu, T., Raad, I. (2012). D-amino acids for the enhancement of a binary biocide cocktail consisting of THPS and EDDS against an SRB biofilm. World Journal of Microbiology and Biotechnology (IF 4.1); 28: 1641-1646. https://link.springer.com/article/10.1007/s11274-011-0970-5.
  • Wang, J., Gu, T., Zhong, J. (2012). Enhanced Recovery of Antitumor Ganoderic Acid T from Ganoderma lucidum Mycelia by Novel Chemical Conversion Strategy . Biotechnology and Bioengineering; 109: 754–762. https://onlinelibrary.wiley.com/doi/full/10.1002/bit.24358.
  • Gu, T. (2012). New Understandings of Biocorrosion Mechanisms and their Classifications. Journal of Microbial & Biochemical Technology; 4: 3-6. http://dx.doi.org/10.4172/1948-5948.1000e107.
  • Zhou, M., Wang, H., Hassett, D., Gu, T. (2012). Recent Advances in Microbial Fuel Cells (MFCs) and Microbial Electrolysis Cells (MECs) For Wastewater Treatment, Bioenergy and Bioproducts. Journal of Chemical Technology & Biotechnology, Wiley; 88: 508-518. https://onlinelibrary.wiley.com/doi/full/10.1002/jctb.4004.
  • Gu, T., Liu, M., Cheng, K., Ramaswamy, S., Wang, C. (2011). A General Rate Model Approach for the Optimization of the Core Radius Fraction for Multicomponent Elution in Preparative Nonlinear Liquid Chromatography Using Cored Beads. Chemical Engineering Science; 66: 3531–3539. https://www.sciencedirect.com/science/article/pii/S0009250911002636.
  • Narayanaswamy, N., Faik, A., Goetz, D., Gu, T. (2011). Supercritical Carbon Dioxide Pretreatment of Corn Stover and Switchgrass for Lignocellulosic Ethanol Production. Bioresource Technology; 102: 6995-7000. https://www.sciencedirect.com/science/article/pii/S0960852411005669?via%3Dihub.
  • Wen, J., Zhao, K., Gu, T., Raad, I. (2010). Chelators enhanced biocide inhibition of planktonic sulfate-reducing bacterial growth. World Journal of Microbiology and Biotechnology (IF 4.1); 26: 1053-1057. https://link.springer.com/article/10.1007%2Fs11274-009-0269-y.
  • Liang, C., Li, Y., Xu, J., Wang, J., Miao, X., Tang, Y., Gu, T., Zhong, J. (2010). Enhanced biosynthetic gene expressions and production of ganoderic acids in static liquid culture of Ganoderma lucidum under phenobarbital induction. Applied Microbiology and Biotechnology; 86: 1367--1374. https://doi.org/10.1007/s00253-009-2415-8.
  • Wen, J., Zhao, K., Gu, T., Raad, I. (2009). A green biocide enhancer for the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon steel surfaces using glutaraldehyde. 8. International Biodeterioration & Biodegradation (IF 4.8); 63: 1102-1106. https://www.sciencedirect.com/science/article/pii/S096483050900167X.
  • Wang, L., Ridgway, D., Gu, T., Moo-Young, M. (2009). Kinetic Modeling of Cell Growth and Product Formation in Submerged Culture of Recombinant Aspergillus niger. Chemical Engineering Communications; 196: 481-490.
  • Zhao, K., Wen, J., Gu, T., Kopliku, A., Cruz, I. (2009). Mechanistic Modeling of Anaerobic THPS Degradation Under Alkaline Condition in the Presence of Mild Steel. July. Materials Performance; 62-66. https://sites.ohio.edu/gu/papers/2009THPS_degradation_modeling.pdf.
  • Du, Z., Li, H., Gu, T. (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances; 25: 464-482. https://www.sciencedirect.com/science/article/pii/S0734975007000547.
  • Gu, T., Zhang, L. (2007). Partition Coefficients of Some Antibiotics, Peptides and Amino Acids in Liquid-Liquid Partitioning of the Acetonitrile-Water System At Subzero Temperatures. Chemical Engineering Communications; 194: 828-834.
  • Zhou, W., Gu, T., Su, Z., Ma, G. (2007). Synthesis of macroporous poly(glycidyl methacrylate) microspheres by surfactant reverse micelles swelling method. European Polymer Journa; 43: 4493-4502.
  • Zhou, W., Gu, T., Su, Z., Ma, G. (2007). Synthesis of macroporous poly(styrene-divinyl benzene) microspheres by surfactant reverse micelles swelling method. Polymer; 48: 1981-1988.
  • Tan, W., Gu, T., Zhong, J. (2006). Separation of Targeted Ganoderic Acids from Ganoderma lucidum by Reversed Phase Liquid Chromatography with Ultraviolet and Mass Spectrometry Detections. Biochemical Engineering Journal; 32: 205-210.
  • Gu, T., Tsai, G., Tsao, G. (2006). Synthesis of Rigid Cyclodextrin-Containing Polymeric Resins for Adsorption. Journal of Inclusion Phenomena and Macrocyclic Chemistry; 56: 375-379.
  • Wang, L., Ridgway, D., Gu, T., Moo-Young, M. (2005). Bioprocess Strategies to Improve Heterologous Protein Production in Filamentous Fungi. Biotechnology Advances; 23: 115-129.
  • Huang, H., Gu, T., Moo-Young, M. (2005). Data Acquisition and Control of A 22-L B. Braun Fermenter Using LabVIEW. Chemical Engineering Communications; 192: 137-144.
  • Xu, J., Shpak, E., Gu, T., Moo-Young, M., Kieliszewski, M. (2005). Production of Recombinant Plant Gum With Tobacco Cell Culture in Bioreactor and Gum Characterization. Biotech. & Bioeng; 90: 578-588.
  • Gu, T., Zhou, W., Ma, G., Su, Z. (2005). Rigid gigaporous chromatographic media and their potential impact on downstream processing. Particuology; 3: 349-353.
  • Huang, H., Ridgway, D., Gu, T., Moo-Young, M. (2004). Enhanced Amylase Production By Bacillus subtilis Using A Dual Exponential Feeding Strategy. Bioprocess and Biosystems Engineering; 27: 63-69.
  • Gu, T., Syu, M. (2004). Modeling of Immobilized Cell Columns for Bioconversion and Wastewater Treatment. Biotechnology Progress; 30: 1460-1466.
  • Huang, H., Ridgway, D., Gu, T., Moo-Young, M. (2003). A Segregated Model for Product Formation By Bacillus subtilis. Enzyme and Microbial Technology; 32: 407–413.
  • Wang, L., Ridgway, D., Gu, T., Moo-Young, M. (2003). Effects of Process Parameters on Heterologous Protein Production in Aspergillus niger fermentation. Journal of Chemical Technology and Biotechnology; 78: 1259-1266.
  • Gu, T., Hsu, K., Syu, M. (2003). Scale-Up of Affinity Chromatography for Purification of Enzymes and Other Proteins. Enzyme and Microbial Technology; 33: 433-437.
  • Li, Z., Gu, T., Kelder, B., Kopchick, J. (2001). Analysis of Fatty Acids in Mouse Cells Using Reversed-Phase High-Performance Liquid Chromatography. Chromatographia; 54: 463-467.
  • O’Donnell, D., Xu, J., Wang, L., Ridgway, D., Gu, T., Moo-Young, M. (2001). Enhanced Heterologous Protein Production in Aspergillus niger through pH Control Of Extracellular Protease Activity. Biochemical Engineering Journal; 8: 187-193.
  • Bai, F., Wang, L., Huang, H., Xu, J., Caesar, J., Ridgway, D., Gu, T., Moo-Young, M. (2001). Oxygen mass-transfer performance of low viscosity gas-liquid-solid system in a split-cylinder airlift bioreactor. Biotechnology Letters; 23: 1109-1113.
  • Xu, J., Wang, L., Ridgway, D., Gu, T., Moo-Young, M. (2000). Increased Heterologous Protein Production in Aspergillus niger Fermentation Through Extracellular Protease Inhibition by Pelleted Growth. Biotechnology Progress; 16: 222-227.
  • Gu, T., Zheng, Y. (1999). A Study of Scale-Up of Reversed-Phase Liquid Chromatography. Separation and Purification Technology; 15: 41-58.
  • Liu, F., Li, W., Ridgway, D., Gu, T., Moo-Young, M. (1998). Inhibition of extracellular protease secretion by Aspergillus niger using cell immobilization. Biotechnology Letters; 20: 539-542.
  • Li, Z., Gu, Y., Gu, T. (1998). Mathematical Modeling and Scale-Up of Size Exclusion Chromatography. Biochemical Engineering Journal; 2: 145-155.
  • Zheng, Y., Gu, T. (1998). Modified van der Waals Equation for the Prediction of Multicomponent Gas Adsorption Isotherms. J. Colloid and Interface Science; 206 : 457-463.
  • Liu, F., Li, W., Ridgway, D., Gu, T., Shen, Z. (1998). Production of Poly-beta-hydroxybutyrate on Molasses by Recombinant Escherichia coli. Biotechnology Letters; 20: 345-348.
  • Zheng, Y., Gu, T. (1996). Analytical Solution to a Model for the Startup Period for Fixed-Bed Reactors. Chemical Engineering Science; 51: 3773-3779.
  • Pence, D., Gu, T. (1996). Liquid-Liquid Equilibrium of the Acetonitrile-Water System for Protein Purification. Sep. Technol.; 6: 261-264.
  • Xu, B., Chen, W., Gu, T., Ridgway, D., Okada, S., Kopchick, J. (1995). Effects of growth hormone antagonists on 3T3-F442A preadipocyte differentiation. J. Endocrinology; 146: 131-139.
  • Gu, T., Zheng, Y., Gu, Y., Haldankar, R., Bhalerao, N., Ridgway, D., Wiehl, P., Chen, W., Kopchick, J. (1995). Purification of A Pyrogen-Free Human Growth Hormone Antagonist. Biotech. & Bioeng.; 48: 520-528.
  • Gu, T., Gu, Y., Zheng, Y., Wiehl, P., Kopchick, J. (1994). Phase separation of acetonitrile-water mixture in protein purification. Sep. Technol.; 4: 258-261.
  • Gu, T., Truei, Y., Tsai, G., Tsao, G. (1992). Modeling of Gradient Elution in Multicomponent Nonlinear Chromatography. Chemical Engineering Science; 47: 253-262.
  • Gu, T., Tsai, G., Tsao, G. (1992). Multicomponent Affinity Radial Flow Chromatography. Sep. Technol.; 2: 176-182.
  • Gu, T., Tsai, G., Tsao, G. (1991). A Theoretical Study of Multicomponent Radial Flow Chromatography. Chemical Engineering Science; 46: 1279-1288.
  • Gu, T., Tsai, G., Tsao, G. (1991). Simulation of Multicomponent Elution with Mobile Phase Containing Competing Modifiers. Sep. Technol.; 1: 184-194.
  • Gu, T., Tsai, G., Tsao, G. (1991). Some Considerations for Optimization of Desorption Chromatography. Biotech. & Bioeng.; 37: 65-70.
  • Gu, T., Tsai, G., Tsao, G. (1991). Study of Multicomponent Adsorption and Chromatography with Uneven Saturation Capacities. AIChE J.; 37: 1333-1340.
  • Gu, T., Tsai, G., Tsao, G., Ladisch, M. (1990). Displacement Effect in Multicomponent Chromatography. AIChE J.; 36: 1156-1162.
  • Gu, T., Tsai, G., Tsao, G. (1990). New Approach to a General Nonlinear Multicomponent Chromatography Model. AIChE J.; 36: 784-788.

Patent (12)

  • Gu, T., Xu, L. Provisional Patent: "Portable and online sensors to detect coatings damage" (2023). 24004-PROV.
  • Gu, T., Xu, L. Methods using a miniature electrochemical cell to assess antibiotic efficacy against medical biofilms. 23028-PROV.
  • Gu, T., Xu, L. Methods using a miniature electrochemical cell to assess antibiotic efficacy against medical biofilms. 23028-PROV.
  • Gu, T., Xu, L. Method for a miniature electrochemical test kit (biofilm/MIC sensor kit) to monitor microbiologically influenced corrosion. 23021-PROV.
  • Gu, T., Xu, L. Method for a miniature electrochemical test kit (biofilm/MIC sensor kit) to monitor microbiologically influenced corrosion. 23021-PROV .
  • Gu, T., Xu, L. Invention disclosure: "Methods for an electrochemical test kit and an online sensor to monitor biofilms and microbiologically influenced corrosion." (2023).
  • Gu, T. Invention disclosure: "Software to predict biocorrosion and biocide efficacy based on mechanistic modeling of biocorrosion" (2022).
  • Gu, T., Wang, D. Invention disclosure: "Methods using magnetite particles to deliver biofilms to metal surfaces" (2022).
  • Gu, T. Invention disclosure: "Methods to attract electron conducting particles to or around a metal surface for distinguishing different types of biocorrosion" (2021).
  • Gu, T., Xu, D. Combination of D-amino acid and tetrakis hydroxymethyl phosphonium sulfate for treating sulfate reducing bacteria biofilms. Canadian Patent 2846850.
  • Gu, T., Xu, D. Compositions and methods for treating biofilms. US 9,034,812 B2 (May 19, 2015).
  • Gu, T. Methods and Compositions for Applications Related to Microbiologically Influenced Corrosion. UK Patent GB2492687 (August 13, 2014).

Book, Scholarly (3)

Book, Chapter in Scholarly Book (18)

  • Zhang, X., Tan, N., Rastegar, S., Gu, T. (2024). Advances in Bioleaching of Rare Earth Elements from Electronic Wastes. Chapter 13 in: Management of electronic waste: resources recovery, technology and regulation, ISBN: 978-1-119-89433-9, Wiley, New York (edited by Anshu Priya). 1st edition. 321-358. https://www.wiley.com/en-us/exportProduct/pdf/9781119894353.
  • Tan, C., Li, M., Zhou, M., Tian, X., He, H., Gu, T. (2020). Photosynthetic Algal Microbial Fuel Cell for Simultaneous NH3-N Removal and Bioelectricity Generation. In: Microbial Electrochemical Technologies, edited by S. M. Tiquia-Arashiro and D. Pant. Boca Raton: CRC Press; 144-153. https://books.google.com/books?id=wGjIDwAAQBAJ&lr=&source=gbs_navlinks_s.
  • Gu, T., Xu, D., Zhang, P., Li, Y., Lindenberger, A. (2015). Microbiologically Influenced Corrosion and Its Impact on Metals and Other Materials. In: Microbiology for Minerals, Metals, Materials and Environment (edited by Pillai Abhilash, B. D. Pandey, K. A. Natarajan). Boca Raton, Florida: CRC Press; 383-408. https://www.crcpress.com/Microbiology-for-Minerals-Metals-Materials-and-the-Environment/Abhilash-Pandey-Natarajan/p/book/9781138748781.
  • Zhou, M., Yang, J., Wang, H., Jin, T., Hassett, D., Gu, T. (2014). Bio-electrochemistry of microbial fuel cells and their potential applications in bioenergy. In: Bioenergy Research: Advances & Applications, edited by V. K. Gupta, M. Tuohy, C. P. Kubicek, J. Saddle, F. Xu. Elsevier: 131–152. https://www.sciencedirect.com/science/article/pii/B9780444595614000097.
  • Xu, D., Li, Y., Lindenberger, A., Liu, H., Gu, T. (2013). Green chemicals for enhanced biofilm mitigation. In: Microbial pathogens and strategies for combating them: science, technology and education (A. Méndez-Vilas, Ed.). Badajoz: Formatex Research; 90-101. https://sites.ohio.edu/gu/papers/2013%20Green%20chemicals%20for%20enhanced%20biofilm%20mitigation_book%20chapter.pdf.
  • Luo, J., Cai, M., Gu, T. (2013). Pretreatment of Lignocellulosic Biomass Using Green Ionic Liquids. In: Green Biomass Pretreatment for Biofuels Production, edited by T. Gu . Berlin-New York: Springer; 127-153. https://link.springer.com/chapter/10.1007%2F978-94-007-6052-3_6.
  • Gu, T. (2013). Pretreatment of Lignocellulosic Biomass Using Supercritical Carbon Dioxide As A Green Solvent. In: Green Biomass Pretreatment for Biofuels Production, edited by T. Gu. Berlin-New York: Springer; 107-125. https://link.springer.com/chapter/10.1007%2F978-94-007-6052-3_5.
  • Tong, M., Du, Z., Gu, T. (2012). Converting low-grade biomass to produce energy using bio-fuel cells, Chapter 4 in Eco- and Renewable Energy Materials . Hauppauge, NY: Nova Publishers; 73-97.
  • Zhou, M., Jin, T., Wu, Z., Chi, M., Gu, T. (2012). Microbial Fuel Cells for Bioenergy and Bioproducts, Chapter 8 in Bioenergy and Bioproducts edited by K. Gopalakrishnan, J. van Leeuwen, R. Brown. New York: Bioenergy and Bioproducts, Springer-Verlag; 131-172.
  • Guo, K., Hassett, D., Gu, T. (2012). Microbial Fuel Cells: Electricity Generation from Organic Wastes by Microbes, Chapter 9 in Microbial Biotechnology: Energy and Environment (edited by Rajesh Arora) . Oxon: CAB International; 162-189 . https://www.cabi.org/cabebooks/ebook/20123375140.
  • Huang, L., Cheng, S., Hassett, D., Gu, T. (2012). Wastewater treatment with concomitant bioenergy production using microbial fuel cells, Chapter 14 in: Water Treatment And Pollution Prevention: Advances In Research edited by S. K. Sharma and R. Sanghi. Berlin-New York: Springer Verlag; 405-452.
  • Gu, T. (2010). Radial flow chromatography. In: Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology. New York: Wiley; 1630-1641. http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471799300.html.
  • Gu, T. (2008). Selection of Biochemical Separation Processes. 8. McGraw-Hill, New York: Perry’s Handbook of Engineering; 20-71 to 20-85.
  • Gu, T. (2000). Liquid-Liquid Partitioning Methods for Bioseparations. In: Handbook of Bioseparations (edited by Satinder Ahuja) . Academic Press, New York; 1: 329-364.
  • Gu, T. (1999). Radial Flow Chromatography. In: The Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, & Bioseparations (edited by M. C. Flickinger and S. W. Drew) . Wiley, New York; 627-639.
  • Gu, T., Tsai, G., Tsao, G. (1993). Modeling of Nonlinear Multicomponent Chromatography. In: Advances in Biochemical Engineering/Biotechnology (edited by A. Fiechter). Springer, Berlin-New York; 49: 45-71.
  • Truei, Y., Gu, T., Tsai, G., Tsao, G. (1992). Large-Scale Gradient Elution Chromatography. In: Advances in Biochemical Engineering/Biotechnology (edited by A. Fiechter). Springer, Berlin-New York; 47: 1-44.
  • Gu, T., Tsai, G., Tsao, G. (1992). Multicomponent Radial Flow Chromatography. In: Advances in Biochemical Engineering/Biotechnology (edited by A. Fiechter). Springer, Berlin-New York; 49: 73-95.

Conference Proceeding (25)

  • Xu, L., Khan, A., Kumseranee, S., Punpruk, S., Kijkla, P., Gu, T. (2023). A highly-corrosive sulfate reducing bacterium as a model microbe to improve MIC investigations. Corrosion/2023 Paper No. C2023-18912 . AMPP Annual Conference + Expo 2023.
  • Wang, D., Hall, T., Gu, T. (2022). Novel antimicrobial heat-conducting “metallic” coatings against biofouling and biocorrosion. Corrosion/2022 Paper No. C2022-18178. AMPP Annual Conference + Expo 2023.
  • Li, Z., Yang, J., Kumseranee, S., Punpruk, S., Mohamed, M., Saleh, M., Gu, T. (2021). MIC Impact on Mechanical Property Degradation of X80 Pipeline Steel by A Sulfate Reducing Bacterium, Corrosion/2021, Paper No. C2021-16274.
  • Unsal, T., Wang, D., Kumseranee , S., Punpruk, S., Gu, T. (2020). Enhanced Biocide Treatment Using D-tyrosine Against Desulfovibrio vulgaris Corrosion of Carbon Steel. Corrosion/2020; Paper No. 2020-14527.
  • Wang, D., Unsal, T., Kumseranee, S., Punpruk , S., Gu, T. (2020). Severe Microbiologically Influenced Corrosion (MIC) of Pure Zinc and Galvanized Steel in the Presence of Sulfate Reducing Desulfovibrio vulgaris. Corrosion/2020; Paper No. 2020-14537.
  • Liu, J., Dou, W., Jia, R., Li, X., Kumseranee, S., Punpruk, S., Gu, T. (2018). Desulfovibrio vulgaris Corroded X65 Carbon Steel and Copper with Two Different Types of MIC Mechanisms. Corrosion/2018, Paper No. 10586, Phoenix, AZ, April 15-19.
  • Jia, R., Yang, D., Rahman, H., Gu, T. (2018). Investigation of the impact of an enhanced oil recovery polymer on microbial growth and MIC. Corrosion/2018, Paper No. 10567, Phoenix, AZ, April 15-19.
  • Jia, R., Yang, D., Li, Y., Zlotkin, A., Gu, T. (2017). A novel peptide at a very low concentration enhanced biocide treatment of corrosive biofilms. CORROSION/2017; Paper No. C2017-8950.
  • Jia, R., Yang, D., Rahman, H., Hamid, P., Salleh, I., Ibrahim, J., Gu, T. (2017). Laboratory testing of enhanced biocide mitigation of microbiologically influenced corrosion in enhanced oil recovery. CORROSION/2017; Paper No. C2017-9039.
  • Jia, R., Yang, D., Li, Y., Al-Mahamedh, H., Gu, T. (2016). Enhancement of alkyldimethylbenzylammonium chloride and tributyl tetradecyl phosphonium chloride biocides using D-amino acids against a field biofilm consortium. CORROSION/2016; Paper No. C2016-7279.
  • Li, Y., Gu, T., Xu, C., Zhang, P., Xu, D. (2015). D-amino acids enhanced biocide mitigation of field biofilm consortia in lab tests. CORROSION/2015; Paper No. C2015-5522.
  • Xu, D., Gu, T. (2015). Mechanistic modeling of biocorrosion. Department of Defense – Allied Nations Technical Corrosion Conference.
  • Fu, W., Li, Y., Xu, D., Gu, T. (2014). Comparison of two different types of anaerobic copper biocorrosion mechanisms by a sulfate reducing bacterium and a nitrate reducing bacterium. CORROSION/2014; Paper No. C2014-3878.
  • Li, Y., Xu, D., Zhang, P., Fu, W., Gu, T. (2014). D-amino acids enhanced biocide mitigation of problematic biofilms. CORROSION/2014; Paper No. C2014-3877.
  • Gu, T., Xu, D. (2013). Why are some microbes corrosive and some not? . CORROSION/2013; Paper No. C2013-0002336.
  • Huang, W., Ruschau, G., Hornemann, J., Xu, D., Wen, J., Gu, T. (2012). Laboratory Investigation of MIC Due to Hydrotest Using Seawater and Subsequent Exposure to Pipeline Fluids With and Without SRB Spiking. CORROSION/2012; Paper No. C2012-0001226.
  • Gu, T. (2012). Can Acid Producing Bacteria Be Responsible for Very Fast MIC Pitting? . Corrosion/2012; Paper No. C2012-0001214.
  • Xu, D., Gu, T. (2011). Bioenergetics Explains When and Why More Severe MIC Pitting by SRB Can Occur. CORROSION/2011; Paper No. 11426.
  • Gu, T., Xu, D. (2010). Demystifying MIC Mechanisms. CORROSION/2010; Paper No. 10213.
  • Zhao, K., Gu, T., Cruz, I., Kopliku, A. (2010). Laboratory Investigation Of MIC In Hydrotesting Using Seawater. CORROSION/2010; Paper No. 10406.
  • Gu, T., Zhao, K., Nesic, S. (2009). A Practical Mechanistic Model for MIC Based on a Biocatalytic Cathodic Sulfate Reduction (BCSR) Theory. CORROSION/2009; Paper No. 09390.
  • Zhao, K., Wen, J., Gu, T., Kopliku, A., Cruz, I. (2008). Mechanistic Modeling of Anaerobic THPS Degradation In Seawater Under Various Conditions. CORROSION/2008; Paper No. 08512.
  • Wen, J., Gu, T., Nesic, S. (2007). Investigation of The Effects of Fluid Flow On SRB Biofilm. CORROSION/2007; Paper No. 07516.
  • Wen, J., Zhao, K., Nesic, S., Gu, T. (2006). Effects of Mass Transfer and Flow Conditions on SRB Corrosion of Mild Steel. CORROSION/2006; Paper No. 06666.
  • Jhobalia, C., Hu, A., Gu, T., Nesic, S. (2005). Biochemical Engineering Approach to Microbiologically Influenced Corrosion. CORROSION/2005; Paper No. 05500.