Ohio University

Sumit Sharma

Sumit   Sharma Profile Picture
Assistant Professor
Stocker 181
Biomedical Engineering

Research Interests: molecular modeling and simulations, thermodynamics and statistical mechanics, biomolecular systems, polymers, machine learning

Journal Article, Academic Journal (23)

  • Aghaaminiha, M., Farnoud, A., Sharma, S. (2021). Quantitative relationship between cholesterol distribution and ordering of lipids in asymmetric lipid bilayers. Soft Matter.
  • Mehrani, R., Sharma, S. (2021). Behavior of water confined between hydrophobic surfaces with grafted segments. Colloid and Interface Science Communications; 40: 100355. https://www.sciencedirect.com/science/article/pii/S2215038220301357?dgcid=author.
  • Khan, M., Singh, H., Sharma, S., Cimatu, K. (2020). Direct Observation of Adsorption Morphologies of Cationic Surfactants at the Gold Metal–Liquid Interface. 22. The Journal of Physical Chemistry Letters; 11: 9901-9906. https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.0c02517.
  • Ko, X., Olivo, J., Brown, B., Nesic, S., Sharma, S. (2020). Experiments and Molecular Simulations to Study the Role of Co-adsorption of Oil in Corrosion Inhibitor Films in Improving Corrosion Mitigation. CORROSION; 76: https://www.corrosionjournal.org/doi/abs/10.5006/3606.
  • Ko, X., Sharma, S. (2020). A Quantitatively Accurate Theory to Predict Adsorbed Configurations of Asymmetric Surfactant Molecules on Polar Surfaces. 26. The Journal of Physical Chemistry B; 124: 5517 - 5524. https://pubs.acs.org/doi/10.1021/acs.jpcb.0c02681.
  • Singh, H., Sharma, S. (2020). Free Energy Profiles of Adsorption of Surfactant Micelles at Metal-Water Interfaces. Molecular Simulation.
  • Singh, H., Sharma, S. (2020). Disintegration of Surfactant Micelles at Metal-Water Interfaces Promotes their Strong Adsorption. https://pubs.acs.org/doi/abs/10.1021/acs.jpcb.9b10780.
  • Sharma, S., Singh, H., Ko, X. (2019). A Quantitatively Accurate Theory to Predict Adsorbed Configurations of Linear Surfactants on Polar Surfaces. 34. The Journal of Physical Chemistry B; 123: 7464-7470. https://pubs.acs.org/doi/abs/10.1021/acs.jpcb.9b05861.
  • Khosravi, Z., Sharma, S., Farnoud, A. (2019). Sub-micron polymeric particles accelerate insulin fibrillation by surface adsorption. 2. Biointerphases; 14: 021001.
  • Carey, H., Hildreth, 3rd, B., Samuvel, D., Thies, K., Rosol, T., Toribio, R., Charles, J., Ostrowski, M., Sharma, S. (2019). Eomes partners with PU.1 and MITF to Regulate Transcription Factors Critical for osteoclast differentiation.. iScience; 11: 238-245.
  • Ghasemi, M., Ramsheh, S., Sharma, S. (2018). Quantitative assessment of thermodynamic theory in elucidating behavior of water under hydrophobic confinement. Journal of Physical Chemistry B; https://pubs.acs.org/doi/abs/10.1021/acs.jpcb.8b09026.
  • Sharma, S., Ko, X., Kurapati, Y., Himanshu, S., Nesic, S. (2018). Adsorption behavior of organic corrosion inhibitors on metal surfaces – some new insights from molecular simulations. Corrosion; http://www.corrosionjournal.org/doi/abs/10.5006/2976.
  • Kurapati, Y., Sharma, S. (2018). Adsorption free energies of imidazolinium-type surfactants in infinite dilution and in micellar state on gold surface. Journal of Physical Chemistry B; 122: 5933-5939. https://pubs.acs.org/doi/abs/10.1021/acs.jpcb.8b02358.
  • Ko, X., Sharma, S. (2017). Adsorption and self-assembly of surfactants on metal-water interfaces. 45. Journal of Physical Chemistry B; 121: 10364 - 10370. http://pubs.acs.org/doi/abs/10.1021/acs.jpcb.7b09297.
  • Remsing, R., Xi, E., Vembanur, S., Sharma, S., Debenedetti, P., Garde, S., Patel, A. (2015). Pathways to dewetting in hydrophobic confinement. Proceedings of the National Academy of Sciences U.S.A.; 112: 8181-8186. http://www.pnas.org/content/112/27/8181.short.
  • Sharma, S., Buldyrev, S., Debenedetti, P., Rossky, P., Stanley, E., Kumar, S. (2013). A coarse grained protein model in water – like solvent. Nature Scientific Reports; 3: 1841. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653448/.
  • Sharma, S., Debenedetti, P. (2012). Free energy barriers to evaporation of water in hydrophobic confinement. 44. The Journal of Physical Chemistry B; 116: 13282 - 13289. http://pubs.acs.org/doi/abs/10.1021/jp308362h.
  • Radhakrishna, M., Sharma, S., Kumar, S. (2012). Enhanced Wang Landau sampling of adsorbed protein conformations. 11. The Journal of Chemical Physics; 136: 114114. http://aip.scitation.org/doi/abs/10.1063/1.3691669.
  • Sharma, S., Debenedetti, P. (2012). Evaporation rate of water in hydrophobic confinement. 12. Proceedings of the National Academy of Sciences U.S.A.; 109: 4365 - 4370. http://www.pnas.org/content/109/12/4365.short.
  • Anand, G., Sharma, S., Dutta, A., Kumar, S., Belfort, G. (2010). Conformational transitions of adsorbed proteins on surfaces of varying polarity. 13. Langmuir; 26: 10803-10811. http://pubs.acs.org/doi/abs/10.1021/la1006132.
  • Sharma, S., Berne, B., Kumar, S. (2010). Thermal and structural stability of adsorbed proteins. 4. Biophysical Journal; 99: 1157-1165. http://www.sciencedirect.com/science/article/pii/S0006349510006685.
  • Anand, G., Sharma, S., Kumar, S., Belfort, G. (2009). Stability of Tethered Proteins. 9. Langmuir; 25: 4998-5005. http://pubs.acs.org/doi/abs/10.1021/la803771d.
  • Sharma, S., Kumar, S. (2008). Finite size effects on locating conformational transitions for macromolecules. The Journal of Chemical Physics; 129: 134901. http://aip.scitation.org/doi/abs/10.1063/1.2979142.

Conference Proceeding (3)

  • Ko, X., Sharma, S. (2020). Adsorption and Self-Assembly of Corrosion Inhibitors on Metallic Surfaces Studied Using Molecular Simulations. NACE Corrosion 2020.
  • Singh, H., Sharma, S. (2020). Designing Corrosion Inhibitors with High Aqueous Solubility and Low Tendency towards Micellization: A Molecular Dynamics Study. NACE Corrosion 2020.
  • Singh, H., Kurapati, Y., Sharma, S. (2019). Aggregation and Adsorption Behavior of Organic Corrosion Inhibitors studied using Molecular Simulations. NACE Corrosion; 12953.