Skip to: Main Content Search Navigation Secondary Navigation

Tingyue Gu

Professor, Chemical and Biomolecular Engineering
Chemical and Biomolecular Engineering, Biomedical Engineering, Institute for Corrosion and Multiphase Technology
Stocker Center 167B
gu@ohio.edu
Phone: 740.593.1499

https://www.ohio.edu/engineering/about/people/profiles.cfm?profile=gu

Internationally known for his work on chromatography modeling and scale-up, Tingyue Gu authored the chromatography simulation package Chromulator, used by dozens of university researchers in more than thirty countries, and by several major pharmaceutical and biotech companies. He also has carried out research in protein purification, as well as in fungal and bacterial fermentation.

Since 2002, Gu has focused on biofilms and microbiologically influenced corrosion (MIC) in the oil and gas industry, and other industries. He is specifically interested in MIC mechanism, biofilm ecology, MIC in underdeposit pitting attacks, enhanced biocide treatment, and mechanistic modeling and prediction of MIC. He leads the MIC-JIP research program at the Institute for Corrosion and Multiphase Technology.

Before joining the Russ College faculty in 1992, Gu worked in the biotechnology group at Miller Brewing Company’s corporate research department, in Milwaukee, Wisconsin. While there, he helped develop a pilot-scale process for production of a rare and naturally occurring recombinant protein.

He is an associate editor of Bioprocess and Biosystems Engineering (Springer).


Research Interests: Microbiologically influenced corrosion, biofilm treatment, bioremediation, microbial fuel cells, cellulosic biomass utilization, fermentation, and bioseparations

All Degrees Earned: Ph.D., Chemical Engineering, Purdue University, August 1990. BS, Chemical Engineering, Zhejiang University, May 1985

Conference Proceeding (20)

  • Liu, J., Dou, W., Jia, R., Li, X., Kumseranee, S., Punpruk, S., Gu, T. (2018). Desulfovibrio vulgaris Corroded X65 Carbon Steel and Copper with Two Different Types of MIC Mechanisms. Corrosion/2018, Paper No. 10586, Phoenix, AZ, April 15-19.
  • Jia, R., Yang, D., Rahman, H., Gu, T. (2018). Investigation of the impact of an enhanced oil recovery polymer on microbial growth and MIC. Corrosion/2018, Paper No. 10567, Phoenix, AZ, April 15-19.
  • Jia, R., Yang, D., Li, Y., Zlotkin, A., Gu, T. (2017). A novel peptide at a very low concentration enhanced biocide treatment of corrosive biofilms. CORROSION/2017; Paper No. C2017-8950.
  • Jia, R., Yang, D., Rahman, H., Hamid, P., Salleh, I., Ibrahim, J., Gu, T. (2017). Laboratory testing of enhanced biocide mitigation of microbiologically influenced corrosion in enhanced oil recovery. CORROSION/2017; Paper No. C2017-9039.
  • Jia, R., Yang, D., Li, Y., Al-Mahamedh, H., Gu, T. (2016). Enhancement of alkyldimethylbenzylammonium chloride and tributyl tetradecyl phosphonium chloride biocides using D-amino acids against a field biofilm consortium. CORROSION/2016; Paper No. C2016-7279.
  • Li, Y., Gu, T., Xu, C., Zhang, P., Xu, D. (2015). D-amino acids enhanced biocide mitigation of field biofilm consortia in lab tests. CORROSION/2015; Paper No. C2015-5522.
  • Xu, D., Gu, T. (2015). Mechanistic modeling of biocorrosion. Department of Defense – Allied Nations Technical Corrosion Conference.
  • Fu, W., Li, Y., Xu, D., Gu, T. (2014). Comparison of two different types of anaerobic copper biocorrosion mechanisms by a sulfate reducing bacterium and a nitrate reducing bacterium. CORROSION/2014; Paper No. C2014-3878.
  • Li, Y., Xu, D., Zhang, P., Fu, W., Gu, T. (2014). D-amino acids enhanced biocide mitigation of problematic biofilms. CORROSION/2014; Paper No. C2014-3877.
  • Gu, T., Xu, D. (2013). Why are some microbes corrosive and some not? . CORROSION/2013; Paper No. C2013-0002336.
  • Huang, W., Ruschau, G., Hornemann, J., Xu, D., Wen, J., Gu, T. (2012). Laboratory Investigation of MIC Due to Hydrotest Using Seawater and Subsequent Exposure to Pipeline Fluids With and Without SRB Spiking. CORROSION/2012; Paper No. C2012-0001226.
  • Gu, T. (2012). Can Acid Producing Bacteria Be Responsible for Very Fast MIC Pitting? . Corrosion/2012; Paper No. C2012-0001214.
  • Xu, D., Gu, T. (2011). Bioenergetics Explains When and Why More Severe MIC Pitting by SRB Can Occur. CORROSION/2011; Paper No. 11426.
  • Gu, T., Xu, D. (2010). Demystifying MIC Mechanisms. CORROSION/2010; Paper No. 10213.
  • Zhao, k., Gu, T., Cruz, I., Kopliku, A. (2010). Laboratory Investigation Of MIC In Hydrotesting Using Seawater. CORROSION/2010; Paper No. 10406.
  • Gu, T., Zhao, K., Nesic, S. (2009). A Practical Mechanistic Model for MIC Based on a Biocatalytic Cathodic Sulfate Reduction (BCSR) Theory. CORROSION/2009; Paper No. 09390.
  • Zhao, K., Wen, J., Gu, T., Kopliku, A., Cruz, I. (2008). Mechanistic Modeling of Anaerobic THPS Degradation In Seawater Under Various Conditions. CORROSION/2008; Paper No. 08512.
  • Wen, J., Gu, T., Nesic, S. (2007). Investigation of The Effects of Fluid Flow On SRB Biofilm. CORROSION/2007; Paper No. 07516.
  • Wen, J., Zhao, K., Nesic, S., Gu, T. (2006). Effects of Mass Transfer and Flow Conditions on SRB Corrosion of Mild Steel. CORROSION/2006; Paper No. 06666.
  • Jhobalia, C., Hu, A., Gu, T., Nesic, S. (2005). Biochemical Engineering Approach to Microbiologically Influenced Corrosion. CORROSION/2005; Paper No. 05500.

Journal Article, Academic Journal (134)

  • Dou, W., Pu, Y., Han, X., Song, Y., Chen, S., Gu, T. (2020). Corrosion of Cu by a sulfate reducing bacterium in anaerobic vials with different headspace volumes. (in press). http://www.sciencedirect.com/science/article/pii/S1567539419306929.
  • Wang, J., Zhang, T., Zhang, X., Asif, M., Jiang, L., Dong, S., Gu, T., Liu, H. (2020). Inhibition effects of benzalkonium chloride on Chlorella vulgaris induced corrosion of carbon steel. 43: 14-20. http://www.sciencedirect.com/science/article/pii/S1005030220300128.
  • Yu, S., Lou, Y., Zhang, D., Zhou, E., Li, Z., Du, C., Qian, H., Xu, D., Gu, T. (2020). Microbiologically influenced corrosion of 304 stainless steel by nitrate reducing Bacillus cereus in simulated Beijing soil solution. (in press). http://www.sciencedirect.com/science/article/pii/S1567539419302270.
  • Pu, Y., Dou, W., Gu, T., Tang, S., Han, X., Chen, S. (2020). Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa. 47: 10 - 19. http://www.sciencedirect.com/science/article/pii/S1005030220301353.
  • Liu, X., Liu, H., Wu, W., Zhang, X., Gu, T., Zhu, M., Tan, W. (2020). Oxidative Stress Induced by Metal Ions in Bioleaching of LiCoO2 by an Acidophilic Microbial Consortium. 10: 3058. https://www.frontiersin.org/article/10.3389/fmicb.2019.03058.
  • Rahimi, G., Rastegar, S., Rahmani Chianeh, F., Gu, T. (2020). Ultrasound-assisted leaching of vanadium from fly ash using lemon juice organic acids. 10: 1685-1696. http://dx.doi.org/10.1039/C9RA09325G.
  • Jia, R., Yang, D., Dou, W., Liu, J., Zlotkin, A., Kumseranee, S., Punpruk, S., Li, X., Gu, T. (2019). A sea anemone-inspired small synthetic peptide at sub-ppm concentrations enhanced biofilm mitigation. 139: 78-85. http://www.sciencedirect.com/science/article/pii/S0964830518307637.
  • Liu, D., Jia, R., Xu, D., Yang, H., Zhao, Y., Khan, M., Huang, S., Wen, J., Yang, K., Gu, T. (2019). Biofilm inhibition and corrosion resistance of 2205-Cu duplex stainless steel against acid producing bacterium Acetobacter aceti. 11. 35: 2494 - 2502. http://www.sciencedirect.com/science/article/pii/S1005030219301859.
  • Li, M., Zhou, M., Luo, J., Tan, C., Tian, X., Su, P., Gu, T. (2019). Carbon dioxide sequestration accompanied by bioenergy generation using a bubbling-type photosynthetic algae microbial fuel cell. 280: 95 - 103. http://www.sciencedirect.com/science/article/pii/S0960852419302342.
  • Jia, R., Wang, D., Jin, P., Unsal, T., Yang, D., Yang, J., Xu, D., Gu, T. (2019). Effects of ferrous ion concentration on microbiologically influenced corrosion of carbon steel by sulfate reducing bacterium Desulfovibrio vulgaris. 153: 127-137. http://www.sciencedirect.com/science/article/pii/S0010938X18317104.
  • Dou, W., Liu, J., Cai, W., Wang, D., Jia, R., Chen, S., Gu, T. (2019). Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation. 150: 258-267. http://www.sciencedirect.com/science/article/pii/S0010938X18319607.
  • Unsal, T., Jia, R., Kumseranee, S., Punpruk, S., Gu, T. (2019). Laboratory investigation of microbiologically influenced corrosion of carbon steel in hydrotest using enriched artificial seawater inoculated with an oilfield biofilm consortium. 100: 544-555. http://www.sciencedirect.com/science/article/pii/S1350630718311877.
  • Zhang, Y., Liu, M., Zhou, M., Yang, H., Liang, L., Gu, T. (2019). Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges. 103: 13 - 29. http://www.sciencedirect.com/science/article/pii/S1364032118308220.
  • Jia, R., Unsal, T., Xu, D., Lekbach, Y., Gu, T. (2019). Microbiologically influenced corrosion and current mitigation strategies: A state of the art review. 137: 42 - 58. http://www.sciencedirect.com/science/article/pii/S096483051830622X.
  • Liu, H., Meng, G., Li, W., Gu, T., Liu, H. (2019). Microbiologically Influenced Corrosion of Carbon Steel Beneath a Deposit in CO2-Saturated Formation Water Containing Desulfotomaculum nigrificans. 10: 1298. https://www.frontiersin.org/article/10.3389/fmicb.2019.01298.
  • Lekbach, Y., Li, Z., Xu, D., Abed, S., Dong, Y., Liu, D., Gu, T., Koraichi, S., Yang, K., Wang, F. (2019). Salvia officinalis extract mitigates the microbiologically influenced corrosion of 304L stainless steel by Pseudomonas aeruginosa biofilm. 128: 193 - 203. http://www.sciencedirect.com/science/article/pii/S1567539419300052.
  • Wang, J., Hou, B., Xiang, J., Chen, X., Gu, T., Liu, H. (2019). The performance and mechanism of bifunctional biocide sodium pyrithione against sulfate reducing bacteria in X80 carbon steel corrosion. 150: 296-308. http://www.sciencedirect.com/science/article/pii/S0010938X18311004.
  • Gu, T., Jia, R., Unsal, T., Xu, D. (2019). Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria. 35: 631-636. http://www.sciencedirect.com/science/article/pii/S1005030218302871.
  • Zhou, E., Li, H., Yang, C., Wang, J., Xu, D., Zhang, D., Gu, T. (2018). Accelerated corrosion of 2304 duplex stainless steel by marine Pseudomonas aeruginosa biofilm. 127: 1 - 9. https://www.sciencedirect.com/science/article/pii/S0964830517306121.
  • Gu, T., Rastegar, S., Mousavi, S., Li, M., Zhou, M. (2018). Advances in bioleaching for recovery of metals and bioremediation of solid wastes. 261: 428-440. https://www.sciencedirect.com/science/article/pii/S0960852418305467.
  • Jia, R., Yang, D., Rahman, H., Gu, T. (2018). An enhanced oil recovery polymer promoted microbial growth and accelerated microbiologically influenced corrosion against carbon steel. 139: 301-308. https://www.sciencedirect.com/science/article/pii/S0010938X17314956.
  • Li, Y., Xu, D., Chen, C., Li, X., Jia, R., Zhang, D., Sand, W., Wang, F., Gu, T. (2018). Anaerobic Microbiologically Influenced Corrosion Mechanisms Interpreted Using Bioenergetics and Bioelectrochemistry: A Review. 34: 1713-1718. https://www.sciencedirect.com/science/article/pii/S100503021830046X.
  • Liu, J., Jia, R., Zhou, E., Zhao, Y., Dou, W., Xu, D., Yang, K., Gu, T. (2018). Antimicrobial Cu-bearing 2205 duplex stainless steel against MIC by nitrate reducing Pseudomonas aeruginosa biofilm. 132: 132-138. http://www.sciencedirect.com/science/article/pii/S096483051731586X.
  • Jia, R., Yang, D., Xu, D., Gu, T. (2018). Carbon steel biocorrosion at 80 °C by a thermophilic sulfate reducing archaeon biofilm provides evidence for its utilization of elemental iron as electron donor through extracellular electron transfer. 145: 47-54. http://www.sciencedirect.com/science/article/pii/S0010938X1732053X.
  • Liu, H., Gu, T., Zhang, G., Liu, H., Cheng, Y. (2018). Corrosion of X80 pipeline steel under sulfate-reducing bacterium biofilms in simulated CO2-saturated oilfield produced water with carbon source starvation. 136: 47-59. https://www.sciencedirect.com/science/article/pii/S0010938X17305437.
  • Jia, R., Tan, J., Jin, P., Blackwood, D., Xu, D., Gu, T. (2018). Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm. 130: 1-11. https://www.sciencedirect.com/science/article/pii/S0010938X17312398.
  • Xu, J., Jia, R., Yang, D., Sun, C., Gu, T. (2018). Effects of D-Phenylalanine as a biocide enhancer of THPS against the microbiologically influenced corrosion of C1018 carbon steel. 35: 109-117. http://www.sciencedirect.com/science/article/pii/S1005030218301877.
  • Huang, Y., Zhou, E., Jiang, C., Jia, R., Liu, S., Xu, D., Gu, T., Wang, F. (2018). Endogenous phenazine-1-carboxamide encoding gene PhzH regulated the extracellular electron transfer in biocorrosion of stainless steel by marine Pseudomonas aeruginosa. 94: 9 - 13. http://www.sciencedirect.com/science/article/pii/S1388248118301802.
  • Dou, W., Jia, R., Jin, P., Liu, J., Chen, S., Gu, T. (2018). Investigation of the mechanism and characteristics of copper corrosion by sulfate reducing bacteria. 144: 237-248. http://www.sciencedirect.com/science/article/pii/S0010938X17322916.
  • Zhao, Y., Zhou, E., Xu, D., Yang, Y., Zhao, Y., Zhang, T., Gu, T., Yang, K., Wang, F. (2018). Laboratory investigation of microbiologically influenced corrosion of 2205 duplex stainless steel by marine Pseudomonas aeruginosa biofilm using electrochemical noise. 143: 281-291. http://www.sciencedirect.com/science/article/pii/S0010938X17312672.
  • Li, M., Zhou, M., Tian, X., Tan, C., McDaniel, C., Hassett, D., Gu, T. (2018). Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. 36: 1316-1327. https://www.sciencedirect.com/science/article/pii/S073497501830082X.
  • Dou, W., Wu, J., Gu, T., Wang, P., Zhang, D. (2018). Preparation of super-hydrophobic micro-needle CuO surface as a barrier against marine atmospheric corrosion. 131: 156 - 163. http://www.sciencedirect.com/science/article/pii/S0010938X16305856.
  • Dong, Y., Jiang, B., Xu, D., Jiang, C., Li, Q., Gu, T. (2018). Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1. 123: 34–44. https://www.sciencedirect.com/science/article/pii/S1567539418300239.
  • Dou, W., Wang, P., Wu, J., Gu, T., Zhang, D. (2018). Strong acid resistance from electrochemical deposition of WO3 on super-hydrophobic CuO-coated copper surface. 69: 978–984.. http://onlinelibrary.wiley.com/doi/10.1002/maco.201709878/full.
  • Xu, D., Jia, R., Li, Y., Gu, T. (2017). Advances in the treatment of problematic industrial biofilms. 33: 97. http://dx.doi.org/10.1007/s11274-016-2203-4.
  • Jia, R., Yang, D., Xu, D., Gu, T. (2017). Anaerobic corrosion of 304 stainless steel caused by the Pseudomonas aeruginosa biofilm. 8: 2335. https://doi.org/10.3389/fmicb.2017.02335.
  • Zhao, Y., Zhou, E., Liu, Y., Liao, S., Li, Z., Xu, D., Zhang, T., Gu, T. (2017). Comparison of different electrochemical techniques for continuous monitoring of the microbiologically influenced corrosion of 2205 duplex stainless steel by marine Pseudomonas aeruginosa biofilm. 126: 142-151. http://www.sciencedirect.com/science/article/pii/S0010938X1631383X.
  • Liu, H., Gu, T., Lv, Y., Asif, M., Xiong, F., Zhang, G., Liu, H. (2017). Corrosion inhibition and anti-bacterial efficacy of benzalkonium chloride in artificial CO2-saturated oilfield produced water. 117: 24 - 34. http://www.sciencedirect.com/science/article/pii/S0010938X16303225.
  • Li, P., Zhao, Y., Liu, Y., Zhao, Y., Xu, D., Yang, C., Zhang, T., Gu, T., Yang, K. (2017). Effect of Cu Addition to 2205 Duplex Stainless Steel on the Resistance against Pitting Corrosion by the Pseudomonas aeruginosa Biofilm. 33: 723-727. http://www.sciencedirect.com/science/article/pii/S1005030216302304.
  • Jia, R., Yang, D., Al-Mahamedh, H., Gu, T. (2017). Electrochemical Testing of Biocide Enhancement by a Mixture of D-Amino Acids for the Prevention of a Corrosive Biofilm Consortium on Carbon Steel. 56: 7640-7649. http://dx.doi.org/10.1021/acs.iecr.7b01534.
  • Jia, R., Yang, D., Xu, D., Gu, T. (2017). Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm. 118: 38 - 46. http://www.sciencedirect.com/science/article/pii/S156753941730169X.
  • Rastegar, S., Gu, T. (2017). Empirical correlations for axial dispersion coefficient and Peclet number in fixed-bed columns. 1490: 133–137. http://dx.doi.org/10.1016/j.chroma.2017.02.026.
  • Jia, R., Li, Y., Al-Mahamedh, H., Gu, T. (2017). Enhanced Biocide Treatments with D-amino Acid Mixtures against a Biofilm Consortium from a Water Cooling Tower. 8: 1538. http://journal.frontiersin.org/article/10.3389/fmicb.2017.01538.
  • Li, P., Zhao, Y., Liu, B., Zeng, G., Zhang, T., Xu, D., Gu, H., Gu, T., Wang, F. (2017). Experimental testing and numerical simulation to analyze the corrosion failures of single well pipelines in Tahe oilfield. 80: 112-122. http://www.sciencedirect.com/science/article/pii/S1350630716306252.
  • Jia, R., Yang, D., Rahman, H., Gu, T. (2017). Laboratory testing of enhanced biocide mitigation of an oilfield biofilm and its microbiologically influenced corrosion of carbon steel in the presence of oilfield chemicals. 125: 116 - 124. http://www.sciencedirect.com/science/article/pii/S0964830517308508.
  • Li, H., Yang, C., Zhou, E., Yang, C., Feng, H., Jiang, Z., Xu, D., Gu, T., Yang, K. (2017). Microbiologically influenced corrosion behavior of S32654 super austenitic stainless steel in the presence of marine Pseudomonas aeruginosa biofilm. 33: 1596-1603. http://www.sciencedirect.com/science/article/pii/S1005030217300671.
  • Jia, R., Yang, D., Xu, J., Xu, D., Gu, T. (2017). Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation. 127: 1-9. http://www.sciencedirect.com/science/article/pii/S0010938X17300495.
  • Jia, R., Yang, D., Xu, D., Gu, T. (2017). Mitigation of a nitrate reducing Pseudomonas aeruginosa biofilm and anaerobic biocorrosion using ciprofloxacin enhanced by D-tyrosine. 7: 6946. http://www.nature.com/articles/s41598-017-07312-7.
  • Jia, R., Yang, D., Li, Y., Xu, D., Gu, T. (2017). Mitigation of the Desulfovibrio vulgaris biofilm using alkyldimethylbenzylammonium chloride enhanced by D-amino acids. 117: 97 - 104. http://www.sciencedirect.com/science/article/pii/S0964830516308162.
  • Liu, H., Gu, T., Asif, M., Zhang, G., Liu, H. (2017). The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria. 114: 102 - 111. http://www.sciencedirect.com/science/article/pii/S0010938X16310186.
  • Sun, D., Xu, D., Yang, C., Shahzad, M., Sun, Z., Xia, J., Zhao, J., Gu, T., Yang, K., Wang, G. (2016). An investigation of the antibacterial ability and cytotoxicity of a novel Cu-bearing 317L stainless steel. 6: 29244. http://www.nature.com/articles/srep29244.
  • Lou, Y., Lin, L., Xu, D., Yang, C., Liu, J., Zhao, Y., Gu, T., Yang, K. (2016). Antibacterial Ability of a Novel Cu-bearing 2205 Duplex Stainless Steel against Pseudomonas aeruginosa Biofilm in Artificial Seawater. 110: 199–205. http://www.sciencedirect.com/science/article/pii/S0964830516300956.
  • Rastegar, S., Mousavi, S., Shojaosadati, S., Gu, T. (2016). Bioleaching of fuel-oil ash using Acidithiobacillus thiooxidans in shake flasks and a slurry bubble column bioreactor. 6: 21756-21764. http://pubs.rsc.org/en/content/articlelanding/2016/ra/c5ra24861b/unauth#!divAbstract.
  • Liu, H., Gu, T., Zhang, G., Cheng, Y., Liu, H. (2016). Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors. 105: 149-160. http://www.sciencedirect.com/science/article/pii/S0010938X16300129.
  • Jiang, J., Xu, D., Xi, T., Shahzad, M., Khan, M., Zhao, J., Fan, X., Yang, C., Gu, T., Yang, K. (2016). Effects of aging time on intergranular and pitting corrosion behavior of Cu-bearing 304L stainless steel in comparison with 304L stainless steel. 113: 46 - 56. http://www.sciencedirect.com/science/article/pii/S0010938X16309416.
  • Li, Y., Jia, R., Al-Mahamedh, H., Xu, D., Gu, T. (2016). Enhanced biocide mitigation of field biofilm consortia by a mixture of D-amino acids. 7: 896. http://journal.frontiersin.org/article/10.3389/fmicb.2016.00896/full.
  • Li, Y., Zhang, P., Cai, W., Rosenblatt, J., Raad, I., Xu, D., Gu, T. (2016). Glyceryl trinitrate and caprylic acid for the mitigation of the Desulfovibrio vulgaris biofilm on C1018 carbon steel. February: 32-23. http://link.springer.com/article/10.1007/s11274-015-1968-1.
  • Da Sun, ., Xu, D., Yang, C., Chen, J., Shahzad, M., Sun, Z., Zhao, J., Gu, T., Yang, K., Wang, G. (2016). Inhibition of Staphylococcus aureus biofilm by a copper-bearing 317L-Cu stainless steel and its corrosion resistance. 69: 744 - 750. http://www.sciencedirect.com/science/article/pii/S092849311630724X.
  • Li, H., Zhou, E., Zhang, D., Xu, D., Yang, C., Feng, H., Jiang, Z., Li, X., Gu, T., Yang, K. (2016). Investigation of microbiologically influenced corrosion of high nitrogen nickel-free stainless steel by Pseudomonas aeruginosa. 111: 811-821. http://www.sciencedirect.com/science/article/pii/S0010938X1630289X.
  • Xu, D., Li, Y., Gu, T. (2016). Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. 110: 52–58. http://www.sciencedirect.com/science/article/pii/S1567539416300366.
  • Li, H., Zhou, E., Zhang, D., Xu, D., Xia, J., Yang, C., Feng, H., Jiang, Z., Li, X., Gu, T., Yang, K. (2016). Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm. 6: 20190. http://www.nature.com/articles/srep20190.pdf.
  • Liu, H., Gu, T., Zhang, G., Cheng, Y., Wang, H., Liu, H. (2016). The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria. 102: 93 - 102. http://www.sciencedirect.com/science/article/pii/S0010938X15300974.
  • Liu, H., Fu, C., Gu, T., Zhang, G., Lv, Y., Wang, H., Liu, H. (2015). Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water. 100: 484-495. http://www.sciencedirect.com/science/article/pii/S0010938X1530055X.
  • Zhang, P., Xu, D., Li, Y., Yang, K., Gu, T. (2015). Electron Mediators Accelerate the Microbiologically Influenced Corrosion of 304 Stainless Steel. 101: 14–21. http://www.sciencedirect.com/science/article/pii/S1567539414000929.
  • Li, H., Xu, D., Li, Y., Feng, H., Liu, Z., Li, X., Gu, T., Yang, K. (2015). Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-reducing Bacterium Desulfovibrio vulgaris . 10 : e0136183. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136183.
  • Xia, J., Yang, C., Xu, D., Sun, D., Nan, L., Sun, Z., Li, Q., Gu, T., Yang, K. (2015). Laboratory Investigation of Microbiologically Influenced Corrosion (MIC) Resistance of a Novel Cu-bearing 2205 Duplex Stainless Steel in the Presence of an Aerobic Marine Pseudomonas aeruginosa Biofilm. 31: 481-492. http://www.tandfonline.com/eprint/E5TEnJAdte6KMSZUU9sJ/full#.VgKkd02FPCM.
  • Yang, H., Zhou, M., Liu, M., Yang, W., Gu, T. (2015). Microbial Fuel Cells for Biosensor Applications. 37: 2357-2364. http://link.springer.com/article/10.1007/s10529-015-1929-7.
  • Nan, L., Xu, D., Gu, T., Song, X., Yang, K. (2015). Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli. 48: 228-234. http://www.sciencedirect.com/science/article/pii/S0928493114008029.
  • Xu, D., Gu, T. (2015). The War against Problematic Biofilms in the Oil and Gas Industry. 7: e124. http://doi.org/10.4172/1948-5948.1000e124.
  • Mehay, A., Gu, T. (2014). A General Rate Model of Ion-Exchange Chromatography for Investigating Ion-Exchange Behavior and Scale-up. 6: 216-222 . http://132.235.17.4/Paper-gu/2014-a-general-rate-model-of-ionexchange-chromatography-for-investigating-ionexchange-behavior-and-scaleup.pdf.
  • Xu, D., Gu, T. (2014). Carbon Source Starvation Triggered More Aggressive Corrosion Against Carbon Steel by the Desulfovibrio vulgaris Biofilm. 91: 74–81 . http://www.sciencedirect.com/science/article/pii/S0964830514000730.
  • Fu, W., Li, Y., Xu, D., Gu, T. (2014). Comparing two different types of anaerobic copper biocorrosion by sulfate- and nitrate-reducing bacteria. 66-70.
  • Xu, D., Li, Y., Gu, T. (2014). D-methionine as a biofilm dispersal signaling molecule enhanced tetrakis hydroxymethyl phosphonium sulfate mitigation of Desulfovibrio vulgaris biofilm and biocorrosion pitting. 65: 837–845. http://onlinelibrary.wiley.com/doi/10.1002/maco.201206894/full.
  • Zheng , B., Li, K., Liu, H., Gu, T. (2014). Effects of Magnetic Fields on Microbiologically Influenced Corrosion. 53: 48–54. http://pubs.acs.org/doi/abs/10.1021/ie402235j.
  • Gu, T. (2014). Theoretical Modeling of The Possibility of Acid Producing Bacteria Causing Fast Pitting Biocorrosion . 6: 68-74 . http://132.235.17.4/Paper-gu/2014%20Theoretical%20Modeling%20of%20the%20Possibility%20of%20Acid%20Producing%20Bacteria%20Causing%20Fast%20Pitting%20Biocorrosion.pdf.
  • Luo, J., Ma, G., Zhou, W., Su, Z., Gu, T. (2013). Comparison of Fully-Porous Beads and Cored Beads in Size Exclusion Chromatography for Protein Purification . 102: 99-105. http://www.sciencedirect.com/science/article/pii/S000925091300537X.
  • Chi, M., He, H., Wang, H., Zhou, M., Gu, T. (2013). Graphite Felt Anode Modified by Electropolymerization of Nano-Polypyrrole to Improve Microbial Fuel Cell (MFC) Production of Bioelectricity. S12-004: 1-4.
  • Xu, D., Huang, W., Ruschau, G., Hornemann, J., Wen, J., Gu, T. (2013). Laboratory Investigation of MIC Threat Due to Hydrotest Using Untreated Seawater and Subsequent Exposure to Pipeline Fluids with and without SRB Spiking. Elsevier: 28: 149-159. https://www.sciencedirect.com/science/article/pii/S1350630712002142.
  • Zhao, K., Gu, T., Cruz, I., Kopliku, A. (2013). Laboratory Investigation of Microbiologically Influenced Corrosion In Pipeline Hydrotest Using Seawater. 52: 64-69.
  • Xu, D., Li, Y., Song, F., Gu, T. (2013). Laboratory Investigation of Microbiologically Influenced Corrosion of C1018 Carbon Steel by Nitrate Reducing Bacterium Bacillus licheniformis. 77: 385–390. http://www.sciencedirect.com/science/article/pii/S0010938X13003545.
  • Zhou, M., Yang, J., Wang, H., Jin, T., Xu, D., Gu, T. (2013). Microbial Fuel Cells (MFCs) and Microbial Electrolysis Cells (MECs) for the Production of Bioelectricity and Biomaterials. 34: 1915-1928. https://doi.org/10.1080/09593330.2013.813951.
  • Gu, T., Iyer, G., Cheng, . (2013). Parameter Estimation And Rate Model Simulation Of Partial Breakthrough Of Bovine Serum Albumin On A Column Packed With Large Q Sepharose Anion-Exchange Particles. . 116: 319-326. https://www.sciencedirect.com/science/article/pii/S1383586613003614.
  • Gu, T., Held, M., Faik, A. (2013). Supercritical CO2 and Ionic Liquids for the Pretreatment of Lignocellulosic Biomass in Bioethanol Production. 34: 1735-1749. https://doi.org/10.1080/09593330.2013.809777.
  • Zhou, M., Gu, T. (2013). The Next Breakthrough in Microbial Fuel Cells and Microbial Electrolysis Cells for Bioenergy and Bioproducts. S12-003: 1-4. http://doi.org/10.4172/1948-5948.S12-003.
  • Wen, J., Xu, D., Gu, T., Raad, I. (2012). A green triple biocide cocktail consisting of a biocide, EDDS and methanol for the mitigation of planktonic and sessile SRB. 28: 431-435. http://doi.org/10.1007/s11274-011-0832-1.
  • Xu, D., Li, Y., Gu, T. (2012). A synergistic D-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm. 28: 3067-3074. https://link.springer.com/article/10.1007/s11274-012-1116-0.
  • Xu, D., Wen, J., Gu, T., Raad, I. (2012). Biocide Cocktail Consisting of Glutaraldehyde, Ethylene Diamine Disuccinate (EDDS), and Methanol for the Mitigation of Souring and Biocorrosion. 68: 994-1002. https://corrosionjournal.org/doi/10.5006/0605?mobileUi=0.
  • Xu, D., Wen, J., Fu, W., Gu, T., Raad, I. (2012). D-amino acids for the enhancement of a binary biocide cocktail consisting of THPS and EDDS against an SRB biofilm. 28: 1641-1646. https://link.springer.com/article/10.1007/s11274-011-0970-5.
  • Wang, J., Gu, T., Zhong, J. (2012). Enhanced Recovery of Antitumor Ganoderic Acid T from Ganoderma lucidum Mycelia by Novel Chemical Conversion Strategy . 109: 754–762. https://onlinelibrary.wiley.com/doi/full/10.1002/bit.24358.
  • Gu, T. (2012). New Understandings of Biocorrosion Mechanisms and their Classifications. 4: 3-6. http://dx.doi.org/10.4172/1948-5948.1000e107.
  • Zhou, M., Wang, H., Hassett, D., Gu, T. (2012). Recent Advances in Microbial Fuel Cells (MFCs) and Microbial Electrolysis Cells (MECs) For Wastewater Treatment, Bioenergy and Bioproducts. 88: 508-518. https://onlinelibrary.wiley.com/doi/full/10.1002/jctb.4004.
  • Gu, T., Liu, M., Cheng, K., Ramaswamy, S., Wang, C. (2011). A General Rate Model Approach for the Optimization of the Core Radius Fraction for Multicomponent Elution in Preparative Nonlinear Liquid Chromatography Using Cored Beads. 66: 3531–3539 . https://www.sciencedirect.com/science/article/pii/S0009250911002636.
  • Narayanaswamy, N., Faik, A., Goetz, D., Gu, T. (2011). Supercritical Carbon Dioxide Pretreatment of Corn Stover and Switchgrass for Lignocellulosic Ethanol Production. 102: 6995-7000. https://www.sciencedirect.com/science/article/pii/S0960852411005669?via%3Dihub.
  • Wen, J., Zhao, K., Gu, T., Raad, I. (2010). Chelators enhanced biocide inhibition of planktonic sulfate-reducing bacterial growth. 26: 1053-1057. https://link.springer.com/article/10.1007%2Fs11274-009-0269-y.
  • Liang, C., Li, Y., Xu, J., Wang, J., Miao, X., Tang, Y., Gu, T., Zhong, J. (2010). Enhanced biosynthetic gene expressions and production of ganoderic acids in static liquid culture of Ganoderma lucidum under phenobarbital induction. 5. 86: 1367--1374. https://doi.org/10.1007/s00253-009-2415-8.
  • Wang, L., Ridgway, D., Gu, T., Moo-Young, M. (2009). Kinetic Modeling of Cell Growth and Product Formation in Submerged Culture of Recombinant Aspergillus niger. 196: 481-490.
  • Zhao, K., Wen, J., Gu, T., Kopliku, A., Cruz, I. (2009). Mechanistic Modeling of Anaerobic THPS Degradation Under Alkaline Condition in the Presence of Mild Steel. July. 62-66.
  • Du, Z., Li, H., Gu, T. (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. 25: 464-482. https://www.sciencedirect.com/science/article/pii/S0734975007000547.
  • Gu, T., Zhang, L. (2007). Partition Coefficients of Some Antibiotics, Peptides and Amino Acids in Liquid-Liquid Partitioning of the Acetonitrile-Water System At Subzero Temperatures. 194: 828-834.
  • Zhou, W., Gu, T., Su, Z., Ma, G. (2007). Synthesis of macroporous poly(glycidyl methacrylate) microspheres by surfactant reverse micelles swelling method. 43: 4493-4502.
  • Zhou, W., Gu, T., Su, Z., Ma, G. (2007). Synthesis of macroporous poly(styrene-divinyl benzene) microspheres by surfactant reverse micelles swelling method. 48: 1981-1988.
  • Tan, W., Gu, T., Zhong, J. (2006). Separation of Targeted Ganoderic Acids from Ganoderma lucidum by Reversed Phase Liquid Chromatography with Ultraviolet and Mass Spectrometry Detections. 32: 205-210.
  • Gu, T., Tsai, G., Tsao, G. (2006). Synthesis of Rigid Cyclodextrin-Containing Polymeric Resins for Adsorption. 56: 375-379.
  • Wang, L., Ridgway, D., Gu, T., Moo-Young, M. (2005). Bioprocess Strategies to Improve Heterologous Protein Production in Filamentous Fungi. 23: 115-129.
  • Huang, H., Gu, T., Moo-Young, M. (2005). Data Acquisition and Control of A 22-L B. Braun Fermenter Using LabVIEW. 192: 137-144.
  • Xu, J., Shpak, E., Gu, T., Moo-Young, M., Kieliszewski, M. (2005). Production of Recombinant Plant Gum With Tobacco Cell Culture in Bioreactor and Gum Characterization. 90: 578-588.
  • Gu, T., Zhou, W., Ma, G., Su, Z. (2005). Rigid gigaporous chromatographic media and their potential impact on downstream processing. 3: 349-353.
  • Huang, H., Ridgway, D., Gu, T., Moo-Young, M. (2004). Enhanced Amylase Production By Bacillus subtilis Using A Dual Exponential Feeding Strategy. 27: 63-69.
  • Gu, T., Syu, M. (2004). Modeling of Immobilized Cell Columns for Bioconversion and Wastewater Treatment. 30: 1460-1466.
  • Huang, H., Ridgway, D., Gu, T., Moo-Young, M. (2003). A Segregated Model for Product Formation By Bacillus subtilis. 32: 407–413.
  • Wang, L., Ridgway, D., Gu, T., Moo-Young, M. (2003). Effects of Process Parameters on Heterologous Protein Production in Aspergillus niger fermentation. 78: 1259-1266.
  • Gu, T., Hsu, K., Syu, M. (2003). Scale-Up of Affinity Chromatography for Purification of Enzymes and Other Proteins. 33: 433-437.
  • Li, Z., Gu, T., Kelder, B., Kopchick, J. (2001). Analysis of Fatty Acids in Mouse Cells Using Reversed-Phase High-Performance Liquid Chromatography. 54: 463-467.
  • O’Donnell, D., Xu, J., Wang, L., Ridgway, D., Gu, T., Moo-Young, M. (2001). Enhanced Heterologous Protein Production in Aspergillus niger through pH Control Of Extracellular Protease Activity. 8: 187-193.
  • Bai, F., Wang, L., Huang, H., Xu, J., Caesar, J., Ridgway, D., Gu, T., Moo-Young, M. (2001). Oxygen mass-transfer performance of low viscosity gas-liquid-solid system in a split-cylinder airlift bioreactor. 23: 1109-1113.
  • Xu, J., Wang, L., Ridgway, D., Gu, T., Moo-Young, M. (2000). Increased Heterologous Protein Production in Aspergillus niger Fermentation Through Extracellular Protease Inhibition by Pelleted Growth. 16: 222-227.
  • Gu, T., Zheng, Y. (1999). A Study of Scale-Up of Reversed-Phase Liquid Chromatography. 15: 41-58.
  • Liu, F., Li, W., Ridgway, D., Gu, T., Moo-Young, M. (1998). Inhibition of extracellular protease secretion by Aspergillus niger using cell immobilization. 20: 539-542.
  • Li, Z., Gu, Y., Gu, T. (1998). Mathematical Modeling and Scale-Up of Size Exclusion Chromatography. 2: 145-155.
  • Zheng, Y., Gu, T. (1998). Modified van der Waals Equation for the Prediction of Multicomponent Gas Adsorption Isotherms. 206 : 457-463.
  • Liu, F., Li, W., Ridgway, D., Gu, T., Shen, Z. (1998). Production of Poly-beta-hydroxybutyrate on Molasses by Recombinant Escherichia coli. 20: 345-348.
  • Zheng, Y., Gu, T. (1996). Analytical Solution to a Model for the Startup Period for Fixed-Bed Reactors. 51: 3773-3779.
  • Pence, D., Gu, T. (1996). Liquid-Liquid Equilibrium of the Acetonitrile-Water System for Protein Purification. 6: 261-264.
  • Xu, B., Chen, W., Gu, T., Ridgway, D., , P., Okada, S., Kopchick, J. (1995). Effects of growth hormone antagonists on 3T3-F442A preadipocyte differentiation. 146: 131-139.
  • Gu, T., Zheng, Y., Gu, Y., Haldankar, R., Bhalerao, N., Ridgway, D., Wiehl, P., Chen, W., Kopchick, J. (1995). Purification of A Pyrogen-Free Human Growth Hormone Antagonist. 48: 520-528.
  • Gu, T., Gu, Y., Zheng, Y., Wiehl, P., Kopchick, J. (1994). Phase separation of acetonitrile-water mixture in protein purification. 4: 258-261.
  • Gu, T., Truei, Y., Tsai, G., Tsao, G. (1992). Modeling of Gradient Elution in Multicomponent Nonlinear Chromatography. 47: 253-262.
  • Gu, T., Tsai, G., Tsao, G. (1992). Multicomponent Affinity Radial Flow Chromatography. 2: 176-182.
  • Gu, T., Tsai, G., Tsao, G. (1991). A Theoretical Study of Multicomponent Radial Flow Chromatography. 46: 1279-1288.
  • Gu, T., Tsai, G., Tsao, G. (1991). Simulation of Multicomponent Elution with Mobile Phase Containing Competing Modifiers. 1: 184-194.
  • Gu, T., Tsai, G., Tsao, G. (1991). Some Considerations for Optimization of Desorption Chromatography. 37: 65-70.
  • Gu, T., Tsai, G., Tsao, G. (1991). Study of Multicomponent Adsorption and Chromatography with Uneven Saturation Capacities. 37: 1333-1340.
  • Gu, T., Tsai, G., Tsao, G., Ladisch, M. (1990). Displacement Effect in Multicomponent Chromatography. 36: 1156-1162.
  • Gu, T., Tsai, G., Tsao, G. (1990). New Approach to a General Nonlinear Multicomponent Chromatography Model. 36: 784-788.

Book, Chapter in Scholarly Book (16)

  • Tan, C., Li, M., Zhou, M., Tian, X., He, H., Gu, T. (2020). Photosynthetic Algal Microbial Fuel Cell for Simultaneous NH3-N Removal and Bioelectricity Generation. In: Microbial Electrochemical Technologies, edited by S. M. Tiquia-Arashiro and D. Pant. Boca Raton: CRC Press; 144-153. https://books.google.com/books?id=wGjIDwAAQBAJ&lr=&source=gbs_navlinks_s.
  • Gu, T., Xu, D., Zhang, P., Li, Y., Lindenberger, A. (2015). Microbiologically Influenced Corrosion and Its Impact on Metals and Other Materials. Boca Raton, Florida: CRC Press; 383-408. https://www.crcpress.com/Microbiology-for-Minerals-Metals-Materials-and-the-Environment/Abhilash-Pandey-Natarajan/p/book/9781138748781.
  • Zhou, M., Yang, J., Wang, H., Jin, T., Hassett, D., Gu, T. (2014). Bio-electrochemistry of microbial fuel cells and their potential applications in bioenergy. In Bioenergy Research: Advances & Applications, edited by V. K. Gupta, M. Tuohy, C. P. Kubicek, J. Saddle, F. Xu. Elsevier: 131–152. https://www.sciencedirect.com/science/article/pii/B9780444595614000097.
  • Xu, D., Li, Y., Lindenberger, A., Liu, H., Gu, T. (2013). Green chemicals for enhanced biofilm mitigation. In: Microbial pathogens and strategies for combating them: science, technology and education (A. Méndez-Vilas, Ed.). Badajoz: Formatex Research; 90-101.
  • Luo, J., Cai, M., Gu, T. (2013). Pretreatment of Lignocellulosic Biomass Using Green Ionic Liquids. In Green Biomass Pretreatment for Biofuels Production, edited by T. Gu . Berlin-New York: Springer; 127-153. https://link.springer.com/chapter/10.1007%2F978-94-007-6052-3_6.
  • Gu, T. (2013). Pretreatment of Lignocellulosic Biomass Using Supercritical Carbon Dioxide As A Green Solvent. In Green Biomass Pretreatment for Biofuels Production, edited by T. Gu. Berlin-New York: Springer; 107-125. https://link.springer.com/chapter/10.1007%2F978-94-007-6052-3_5.
  • Tong, M., Du, Z., Gu, T. (2012). Converting low-grade biomass to produce energy using bio-fuel cells,Chapter 4 in Eco- and Renewable Energy Materials . Hauppauge, NY: Nova Publishers; 73-97.
  • Zhou, M., Jin, T., Wu, Z., Chi, M., Gu, T. (2012). Microbial Fuel Cells for Bioenergy and Bioproducts, Chapter 8 in Bioenergy and Bioproducts edited by K. Gopalakrishnan, J. van Leeuwen, R. Brown. New York: Bioenergy and Bioproducts, Springer-Verlag; 131-172.
  • Guo, K., Hassett, D., Gu, T. (2012). Microbial Fuel Cells: Electricity Generation from Organic Wastes by Microbes, Chapter 9 in Microbial Biotechnology: Energy and Environment . Oxon: CAB International; 162-189.
  • Huang, L., Cheng, S., Hassett, D., Gu, T. (2012). Wastewater treatment with concomitant bioenergy production using microbial fuel cells, Chapter 14 in: Water Treatment And Pollution Prevention: Advances In Research edited by S. K. Sharma and R. Sanghi. Berlin-New York: Springer Verlag; 405-452.
  • Gu, T. (2008). Selection of Biochemical Separation Processes. 8. McGraw-Hill, New York: Perry’s Handbook of Engineering; 20-71 to 20-85.
  • Gu, T. (2000). Liquid-Liquid Partitioning Methods for Bioseparations . Academic Press, New York; 1: 329-364.
  • Gu, T. (1999). Radial Flow Chromatography. Wiley, New York; 627-639.
  • Gu, T., Tsai, G., Tsao, G. (1993). Modeling of Nonlinear Multicomponent Chromatography. Springer, Berlin-New York; 49: 45-71.
  • Truei, Y., Gu, T., Tsai, G., Tsao, G. (1992). Large-Scale Gradient Elution Chromatography. Springer, Berlin-New York; 47: 1-44.
  • Gu, T., Tsai, G., Tsao, G. (1992). Multicomponent Radial Flow Chromatography. Springer, Berlin-New York; 49: 73-95.

Book, Scholarly-Revised (1)

Book, Chapter in Scholarly Book-Revised (1)

Book, Scholarly (2)

  • Gu, T. (2013). Green Biomass Pretreatment for Biofuels Production (edited book). Berlin-New York: Springer; 162 pages. http://www.springer.com/chemistry/book/978-94-007-6051-6.
  • Gu, T. (1995). Mathematical Modeling and Scale-Up of Liquid Chromatography (123 pages). Berlin-New York: Springer.

Patents

  • Gu, T., Xu, D. COMBINATION OF D-AMINO ACID AND TETRAKIS HYDROXYMETHYL PHOSPHONIUM SULFATE FOR TREATING SULFATE REDUCING BACTERIA BIOFILMS. Canadian Patent 2846850.
  • Gu, T., Xu, D. Compositions and methods for treating biofilms. US 9,034,812 B2 (May 19, 2015).
  • Gu, T. Methods and Compositions for Applications Related to Microbiologically Influenced Corrosion. UK Patent GB2492687 (August 13, 2014).