In this issue:
• Golf Cart Safety
• Laboratory Safety
• Staff Spotlight
• Top 10 Reasons to Wear a Lab Coat

What is RMS?
RMS is the Ohio University Risk Management and Safety Department. Our mission is to ensure for all OHIO users a place that is free from unintentional harm or risk. In other words, we strive to provide all campus users a place to work, live, learn and visit that is safe, healthy and environmentally friendly. The RMS staff is composed of a group of highly qualified and experienced applied scientists and administrators who strive every day to make OHIO a better place. One of the key goals of the RMS Department is to offer our services to everyone as we become involved with different activities. Another goal is to become an internal consultant to all campus departments, academics and service activities. We want to be involved in the early planning of campus activities which could affect the Health and Safety of the campus community or have an adverse environmental impact. If we do not have the staff expertise to assist you, we will locate it. RMS responsibilities are numerous. Our five primary areas include: Radiation & Lab Safety, Environmental Health & Safety, Workers Compensation, Emergency Management & Business Continuity Planning, and Risk Management & Insurance. The bottom line goal of any safety organization is to reduce the cost of incidental losses. If we can reduce the cost of these losses, we can give back to the University extra money and resources to use on your activities.

How can we help you?
The University is engaged in many wild and wonderful adventures. We at RMS encourage these, and will actively support them if you give us a chance to assist you in making them safe. It is never our position to refuse any activity, but it is always our responsibility to ensure all activities are performed in the safest manner possible. Use RMS as your internal consultant. We want to be involved in all campus activities which could affect the Health and Safety of the campus community or have an adverse environmental impact. If you are planning something special, contact us. We may not know the answers to all of your questions, but we will find the answers for you.

https://www.ohio.edu/riskandsafety/
It is important to point out that golf carts and LSVs are not designed for crashworthiness with other vehicles. The Insurance Institute for Highway Safety's news release in May 20, 2010, points out that LSVs are essentially souped up golf carts that were envisioned as a low cost, eco-friendly way to tool around gated communities in the Sun Belt where they would have little interaction with larger vehicles.

The National Highway Traffic Safety Administration (NHTSA) in 1998 established safety standards for LSVs to be used in "within retirement or other planned communities with golf courses." LSVs are designed to go 20 - 25 mph. NHTSA requires these components: headlights, taillights, stoplights, front and rear turn signals, reflectors, parking brakes, rearview mirrors, windshields, safety belts, and vehicle identification numbers. Significantly, NHTSA does not require LSVs to have airbags, or other safety features beyond seatbelts since they are intended for low risk driving.

In vehicle crashworthiness safety tests, two GEM e2 electric vehicles were tested and showed damage to vehicle test dummies indicating serious or fatal injury for occupants. The first was a side impact test in which a pickup or SUV crashes into the nonmoving GEM car at 31 mph. The second test involved a Smart Car crashing into a stationary GEM at 31 mph. David Zuby, the Insurance Institute for Highway Safety's chief research officer commented that "GEM and other LSVs weren't designed to protect people in a crash with a micro car like the Smart Fortwo, let alone larger cars, SUVs, and pickups in everyday traffic." Another author has acknowledged this danger - "the low relative vehicular weight of the LSV as compared to the typical automobile and the lack of occupant protection make collisions between the two especially dangerous for the occupants of the LSV."

Traffic Laws
Requirements for operating golf carts & LSVs on public streets vary county to county and city by city in Ohio, but every cart must adhere to Ohio state laws on the operation of LSVs. Carts must be driven in accordance with standard traffic laws, per Ohio Revised Code, Chapter 4511. Additionally, most counties and cities only allow golf carts & LSVs to be driven on roads with a 25-mph speed limit. Golf cart drivers must have a valid driver's license and proof of insurance. Drivers should be vigilant of faster moving traffic, move aside for larger traffic and never stop in the road to sight-see. Drivers have a duty to take care when operating golf carts & LSVs to avoid collisions with pedestrians and bicyclists.

https://www.ohio.edu/riskandsafety/
Preventing Sticks and Cuts in the Laboratory

Needle sticks and cuts are some of the most common injuries in a laboratory setting. Frequent use of needles, glassware and scalpels means that researchers constantly face the threat of injuring themselves in the laboratory although recent technological advances are helping to prevent some of these injuries. Under certain circumstances, such as in labs utilizing infectious agents, needle sticks and cuts can transmit serious infection so every precaution must be taken to minimize the risk to laboratory workers. Below are some ways to minimize risk and prevent injuries to laboratory workers.

1) Eliminate sharps usage whenever possible
- Identify all sharps used in your procedures and determine if a suitable alternative exists that eliminates the sharp hazard from the protocol. For example, glass pipettes may be replaced with plastic which reduces the risk of injury from broken glass.

2) Utilize “safer sharps” devices
- Sharps with engineered safety features such as safety syringes and safety scalpels are a great alternative to traditional devices. They provide good functionality while minimizing risk to the user and persons that may come into contact with the device.

3) Training and proper use of sharps devices
- Knowing how to safely use glassware or a syringe or scalpel is key to preventing injuries. Make certain that everyone using sharps in the laboratory is properly trained on their use.
- NEVER recap syringes. This is the leading cause of needle stick injuries and very easily preventable.
- Always use forceps to change scalpel blades if a disposable safety scalpel is not an option.
- Do not leave sharps in the open when they are not in use and clean them up as soon as work has finished. Also never leave sharps in your pockets!

4) Appropriate sharps disposal
- Dispose of sharps in a proper sharps container that is puncture resistant and has a lid that seals permanently. Sharps containers can be purchased from suppliers such as Fisher and VWR. When your sharps container is full, seal it up permanently and dispose of it in the dumpster. If they are contaminated with hazardous agents, either chemical, biological, or radiological mark them as such and contact Risk Management and Safety at 593-1666 for assistance with disposal.
- Never overfill sharps container!
- Makeshift sharps containers such as beakers and coffee cans are not acceptable.
- Broken glass should be deposited into a sturdy cardboard box with a plastic liner and sealed when full for disposal. Broken glass containers can be purchased through Fisher and VWR as well.

5) In the event of an injury
- Thoroughly wash the injured area with soap and water and cover with a bandage. If the injury is severe, seek medical attention.
- Report the injury to your supervisor and to RMS (593-1666) with an incident report form: (https://www ohio.edu/riskandsafety/docs/Incident_Form.pdf).

The majority of laboratory needle sticks and cuts can be easily avoided with proper housekeeping, training and careful use and selection of equipment. Sharps with engineered safety features should be utilized whenever possible as they are proven to reduce injuries in the workplace and are just as functional as their classical counterparts. Proper sharps disposal not only reduces injuries to users, but to everyone who may come into contact with the devices after use. Contaminated sharps must be disposed of according to the type of contamination and university regulations; contact RMS at 593-1666 with any questions about sharps disposal. With some careful thought and planning, needle sticks and cuts in the laboratory can be substantially reduced!

https://www.ohio.edu/riskandsafety/
Staff Spotlight

Starring: Susan Higgins

Susan has been working for the University since February of 1986. She has been with her current department, Environmental Health & Safety/Risk Management & Safety since July of 2000. It is safe to say she knows what she is doing. Unfortunately, she will be retiring at the end of April. During her time here she was hired as the Radiation Safety Secretary and was promoted to the Records Management Associate because of the number of records she managed. Environmental Health & Safety became Safety and Risk Management and then changed to Risk Management and Safety. As she directly reported to Joe Adams, Associate Vice President for RMS, her title and responsibilities became more global and her title was changed to Administrative Coordinator. There have been a lot of staff come and go over the years. She has assisted in the hiring all of new staff. After she is retired she is moving to Virginia to be closer to her sons and their families. She will miss working here very much and said that she will miss the people and the fact that you never know what is going to happen from day-to-day. The people will miss her too.

Q & A with Susan Higgins

1. What was your dream job as a kid?
 To be a teacher.

2. What advice do you have for the person taking over your position?
 Be good at balancing a lot of plates at the same time. There are a lot of different personalities in RMS. Patience and understanding are good attributes.

3. What do you look forward to most about retirement?
 Spending time with my family, especially my 4 granddaughters.

4. Do you plan on traveling? If so, where?
 I would love to explore the state of Virginia. There are so many things to see and do. A trip Hilton Head Island is also on my list.

5. Do you plan to pick up any hobbies now that you will have more free time? If so, what and why?
 I have too many hobbies already to take up a new one. I have several scrapbooks in progress. I love to read, garden and walk/hike. In the future I would also like to kayak.

Retirement reception tentatively set for Thursday April 28.

https://www.ohio.edu/riskandsafety/
What is the most important rule in chemistry? Never lick the spoon! What is the second most important rule in chemistry? Always wear your lab coat! A white coat or laboratory coat is a knee-length overcoat/smock worn by professionals in the medical field or by those involved in laboratory work. The coat protects their clothes and skin while also serving as a simple uniform. The garment is made from white or light-colored cotton, linen, or cotton polyester blend, allowing it to be washed at high temperature and make it easy to see if it is clean.

So our top ten reasons to wear a lab coat:

10. Lab coats with sleeves rolled down and all buttons-buttoned make you look like a serious scientist (if you’re also wearing safety googles you look like a smart scientist).
9. Lab coats protect your regular clothing from dirt and non-obvious contamination in the lab.
8. Keeping your lab coat in the lab prevents spreading contamination from the laboratory to your home.
7. Tie-dyed shirts go in and out of style, but a tie-dyed lab coat is always fashionable.
6. Lab coats protect your skin from spills and splashes that occur in the laboratory.
5. Many lab coats are fire-resistant.
4. You can get lab coats with special features, like static-control, wrist cuff and back ties, to fit your specific application.
3. If you are wearing your lab coat, the safety staff won’t stop you and ask “Where’s your lab coat?”
2. Many clothing items made with synthetic fabrics will melt in heat or fire causing severe burns. Lab coats are generally made of cotton or specialized fabrics that will not melt.
1. If something splashes onto your lab coat or your coat catches on fire – you can easily take the coat off. It is more difficult to remove normal clothing.

University approved laboratory coats can be purchased in the stock room of Clippinger Laboratories at any point in the semester. Lab goggles can also be purchased here.

https://www.ohio.edu/riskandsafety/
How to report an accident for a Ohio University vehicle:

1. **STOP:**
 - Turn off ignition.

2. **PROTECT:**
 - Guard the scene from further damage.

3. **ASSIST:**
 - Render only what first aid you are qualified to give. Don’t move injured unless necessary. For serious injury, call an ambulance.

4. **CALL:**
 - Notify local police department. In many states it is unlawful to leave the incident without permission. Cooperate with the authorities.

5. **OBTAIN:**
 - Get all the necessary information for an accurate report (include witness information where applicable).

6. **REPORT:**
 - Follow internal procedures. Report all incidents to your department manager for the University.

7. **AVOID:**
 - Do not discuss the facts of the incident with anyone other than a law enforcement agency or your supervisor.

In your vehicle, there should be a pamphlet in the glove compartment with questions requiring Policyholder information, details, weather conditions, authority contacted, injuries, witnesses, and vehicle information.

The State of Workers’ Compensation at Ohio University

The start of 2016 gives us time to reflect upon the self-insured Workers’ Compensation program at Ohio University. The University was granted self-insured status by the Ohio Bureau of Workers’ Compensation (BWC) on January 1, 2013. The BWC concluded a claims compliance audit of Ohio University’s self-insured workers’ compensation program on December 30, 2015. The scope of the audit included reports filed by the University’s Workers’ Compensation Department with the BWC and compliance for claims with a date of injury between 7/1/13 and 11/1/15. The BWC’s findings can be found on page 7.

https://www.ohio.edu/riskandsafety/
(cont. from Pg 6)

BWC 12/30/15 compliance audit findings

The BWC found “no variances” in the reports filed by the University and that “all supporting documentation confirmed the reported amount” of compensation paid to injured workers. On the claims compliance portion of the audit, the BWC “identified no negative trends in the accuracy and timeliness of compensation payments. We have determined that you show a clear interest in the welfare of your injured workers.” The BWC audit report went on to conclude Ohio University is “complying with the requirements for self-insurance in Ohio. It appears you have effective controls in place to ensure compliance with the statutory requirements.”

We at Ohio University’s Workers’ Compensation Department thank everyone for their hard work and attention to following the BWC laws and regulations. Ohio University has made worker safety a priority. We wish to express our gratitude to all University departments and individuals who have assisted and supported the Workers’ Compensation program.

If you have any questions about your claim or Workers’ Compensation in general, please contact Workers’ Compensation Manager Larry Wines at 597-1992, or Workers’ Compensation Administrative Specialist Marilyn McVey at 597-1994.