27 miles

KAILEE SLUSSER, MA, OU
KAUMUDI MAHAJAN, BA, MSU
MICAH FLUELLEN, BS, OU
NATHAN SZOCH, BS, OU
NICK BOLIN, MA, OU
NICOLE LOVINS, MA, OU
"I cherish my memories of Corning... the train whistle late at night, waiting at the town crossing, counting the coal cars, visiting the Roundhouse, going to Columbus on the train, the busy depot... "The Railroad Town."

"The Railroad Era was a magical time to live in Corning."

"Corning became the railroad center of the area."

"It was a great place to grow up."

"They only knew one sport, basketball, and they loved it."
Personas

THE ARTIST

- **Aged 30-60** • passionate artist who use quality materials all around primarily an applied artist • potential customer, or looking for painting inspiration

The artist is currently working in a creative field. She enjoys sketching and painting in her free time. Often she’s found in coffee shops or in her apartment in a suburban city.

THE COLLECTOR

- **Aged 40-60** • successful professional that collects art with a story interested in the pollution to paint process for its novelty

The collector actively looks for art to decorate his loft in a big city. He works for a large corporation in high-power position. He’s married and settled into his professional life.

THE ACTIVIST

- **Aged 20-40** • cares deeply about pollution reversal and reduction seeks out products that support their environmentally friendly lifestyle

The activist is vocal. He protests to persuade people to live a more green lifestyle. He tries to minimize his carbon footprint with public transport. He works as a park ranger.
This pigment is made from acid mine drainage in Sunday Creek of Southeast Ohio, home of the largest concentration of coal-burning power plants in the world. We’re turning pollution to paint.
STEP 1: Drawing toxic water from Sunday Creek, trays begin filtering natural debris and adding oxygen to the water.

STEP 2: Drawing toxic water from Sunday Creek, trays begin filtering natural debris and adding oxygen to the water.

STEP 3: Over the course of a 22 hour period, the water travels from Retention Tank 1 to Retention Tank 2. The iron in the water is oxidized and moves to the Settling Tank.

STEP 4: With 90% of the iron being oxidized at this stage, an orange solid settles at the bottom of the tank. Clean water is collected in a weir and transfers to a slag bed.

STEP 5: The orange solid is then pumped back into Retention Tank 1 and begins to accelerates the oxidizing process due to the bacteria that is present. The sludge is harvested bi-weekly and turned into pigments.

STEP 6: Free of iron, the water travels to the Slag Bed. The water's pH level is neutralized and released back in the creek.
1879
Joseph Rodgers sells his land to dozens of people and businesses. Corning is norm.

1890
1,551 people live in Corning. ~300 worked on the railroad.

1903
Middle Kittaning (No.6), a major coal seam also referred to as a drip mine, is created. This seam runs directly through Corning, Ohio.

1950
The advent of the diesel engine and the improvement in transportation of coal by trucks, led to the decline of railroading through Corning.

1970
Corning's mining industry begins to decline.

2018
Ohio University professors Riegle and Sabraw, along with Watershed coordinator Shively, work to restore Sunday Creek; turning the iron oxide into valuable pigment.

Middle Kittaning is drilled into in an attempt to relieve water pressure, unexpectedly resulting in a 30ft gusher. After stabilizing, a flow of toxic mine drainage began to leak into Sunday Creek.
Near the Ohio River in the southeastern part of the state of Ohio, houses the largest concentration of coal burning power plants in the world. Scattered over thousands of square miles are innumerable abandoned underground coal mines. Rainwater seeps into caverns and becomes contaminated with toxic levels of heavy metals. This water then flows out into the 27 miles of the Sunday River, turning it and the surrounding creeks yellow, orange and red as the metals oxidize.

ABOUT PROCESS

SOCIAL

STEP 1: Drawing toxic water from Sunday Creek, trays begin filtering natural debris and adding oxygen to the water.

STEP 2: Over the course of a 22 hour period, the water travels from Retention Tank 1 to Retention Tank 2. The iron in the water is oxidized and moves to the Settling Tank.

STEP 3: With 90% of the iron being oxidized at this stage, an orange solid settles at the bottom of the tank. Clean water is collected in a weir and transfers to a slag bed.

STEP 4: The orange solid is then pumped back into Retention Tank 1 and begins to accelerates the oxidizing process due to the bacteria that is present. The sludge is harvested bi-weekly and turned into pigments.

STEP 5: Free of iron, the water travels to the Slag Bed. The water's ph level is neutralized and released back in the creek.

27 MILES

27 miles paint pigments are the environmental artists choice for creating sustainable art. AMD pigments can easily be mixed with oil based or acrylic paints to produce vibrant works of art.

Vibrant pigments, sustainable packaging and overall environmentally friendly

$27 | 2 oz.

$500 | 24" x 24" Chroma Print

PRETTY POLLUTANTS

© 2019 SCHOOL OF VISUAL COMMUNICATION
Near the Ohio River in the southeastern part of the state of Ohio, houses the largest concentration of coal burning power plants in the world. Scattered over thousands of square miles are innumerable abandoned underground coal mines. Rainwater seeps into caverns and becomes contaminated with toxic levels of heavy metals. This water then flows out into the 27 miles of the Sunday River, turning it and the surrounding creeks yellow, orange and red as the metals oxidize.

PROCESS

STEP 1: Drawing toxic water from Sunday Creek, trays begin filtering natural debris and adding oxygen to the water.

STEP 2: Drawing toxic water from Sunday Creek, trays begin filtering natural debris and adding oxygen to the water.

STEP 3: Over the course of a 22 hour period, the water travels from Retention Tank 1 to Retention Tank 2. The iron in the water is oxidized and moves to the Settling Tank.

STEP 4: With 90% of the iron being oxidized at this stage, an orange solid settles at the bottom of the tank. Clean water is collected in a weir and transfers to a slag bed.

STEP 5: The orange solid is then pumped back into Retention Tank 1 and begins to accelerate the oxidizing process due to the bacteria that is present. The sludge is harvested bi-weekly and turned into pigments.

STEP 6: Free of iron, the water travels to the Slag Bed. The water's pH level is neutralized and is released back in the creek.

The streams these pigments come from connect to other streams, rivers and eventually the ocean. This might seem a local issue but it is not – it is a global issue. One can isolate and examine moments on a micro scale but if you pull back, you can see that they all connect in a wholly-dependent macro system.

PRETTY POLLUTANTS

© 2019 SCHOOL OF VISUAL COMMUNICATION
Near the Ohio River in the southeastern part of the state of Ohio, houses the largest concentration of coal burning power plants in the world. Scattered over thousands of square miles are innumerable abandoned underground coal mines. Rainwater seeps into caverns and becomes contaminated with toxic levels of heavy metals. This water then flows out into the 27 miles of the Sunday River, turning it and the surrounding creeks yellow, orange and red as the metals oxidize.

27 MILES paint pigments are the environmental artists choice for creating sustainable art. AMD pigments can easily be mixed with oil based or acrylic paints to produce vibrant works of art.

Vibrant pigments, sustainable packaging and overall environmentally friendly

$27 | 2 oz.

Our Product

Pretty Pollutants

Everything is intertwined. The streams these pigments come from connect to other streams, rivers and eventually the ocean. This might seem a local issue but it is not – it is a global issue. One can isolate and examine moments on a micro scale but if you pull back, you can see that they all connect in a wholly-dependent macro system.

$500 | 24" x 24" Chroma Print
Everything is intertwined. The streams these pigments come from connect to other streams, rivers and eventually the ocean. This might seem a local issue but it is not – it is a global issue. One can isolate and examine moments on a micro scale but if you pull back, you can see that they all connect in a wholly-dependent macro system.

© 2019 SCHOOL OF VISUAL COMMUNICATION

PRETTY POLLUTANTS

$500 | 24” x 24” Chroma Print