Cognitive and Linguistic Assessment Using Eye Tracking and Recording

<table>
<thead>
<tr>
<th>Reference Number</th>
<th>OU08018</th>
</tr>
</thead>
</table>
| Inventors | Brooke Hallowell, Ph.D., CCC-SLP
| | Laura Roche |
| Field | Telemedicine
| | Medical Devices |
| Technology | A novel method for assessing language and related cognitive processing through eye tracking measures |
| Stage of Development | Lab tested proof of concept developed
| | Development of the software that runs the assessment protocol, takes measurements, and analyzes data in coordination with current eye tracking technologies is in progress |
| Business Opportunity | Available for licensing
| | Seeking development and commercialization partner |
| | Published April 15, 2010
| | WO/2010/045356
| | Published April 22, 2010 |

Background
Researchers at Ohio University have developed a novel method for assessing language and related cognitive function through analysis of eye movements. A majority of stroke and traumatic brain injury victims have motoric and/or perceptual deficits that impair their ability to comprehend and respond to basic stimuli, which has consequences in how they are managed as patients. Linguistic comprehension and other linguistic and cognitive processing deficits in such patients are often overestimated by experimental data, test results, and clinical judgment. In some cases, caregivers and significant others may overestimate how much an individual actually understands. The invention provides a means for caregivers to accurately gain information about intact comprehension and cognitive ability of inexpressive patients, and thereby make well-informed patient management decisions.

The technology works by presenting a patient with written or auditory stimuli, and tracking the patient’s eye movements in response to these stimuli with recording devices. The data generated by the recording devices is converted into a number of measurements and are analyzed through custom software to indicate valid responses, indicating whether the patients have understood the written or auditory verbal stimuli.

The invention provides a novel alternative to conventional clinical methods that are limited in their ability to provide accurate, valid assessments of a patient’s comprehension following serious neurological trauma. It has been proof-of-concept tested and is currently under further development.

Potential/Commercial Applications
- Monitoring patients who have suffered from neurological trauma
- Establishing the comprehension level of patients who are unable to express themselves using conventional means
- Translate the wishes and intentions of inexpressive patients to their caregivers who are otherwise unable to accurately assess the desires of the patient

Benefits of Technology
- Allows more accurate differential diagnosis of an inexpressive patient’s comprehension level than the current best practices
- Allows for a finer resolution of comprehension level besides binary “correct” or “incorrect” responses
- Technology has undergone substantial validation on patients suffering from neurological conditions and healthy controls and has demonstrated strong reliability and validity for its intended applications

Contact
Barbara J. Varone, Esq.
T: 740.593.0813
varone@ohio.edu
Inventors

Brooke Hallowell, Ph.D., CCC-SLP is Professor and Director of the Neurolinguistics Laboratory at Ohio University. She is active in research on acquired neurogenic communication disorders in adults.

Laura Roche is a PhD student in speech-language pathology and a research assistant in the Neurolinguistics Laboratory at Ohio University. Her primary interests are in adult neurogenic communication disorders.