VEGAN: AN INTRODUCTION TO ORDINATION

JARI OKSANEN

CONTENTS
1. Ordination 1
 1.1. Detrended correspondence analysis 1
 1.2. Non-metric multidimensional scaling 2
2. Ordination graphics 2
 2.1. Cluttered plots 4
 2.2. Adding items to ordination plots 4
3. Fitting environmental variables 4
4. Constrained ordination 6
 4.1. Significance tests 8
 4.2. Conditioned or partial ordination 9

Vegan is a package for community ecologists. This document explains how the commonly used ordination methods can be done in vegan. The document only is a very basic introduction. Another document (vegan tutorial) (http://cc.oulu.fi/~jarioksa/opetus/method/vegantutor.pdf) gives a longer and more detailed introduction to ordination. The current document only describes a small part of all vegan functions. For most functions, the canonical references are the vegan help pages, and some of the most important additional functions are listed at this document.

1. Ordination

The vegan package contains all common ordination methods: Principal component analysis (function rda, or prcomp in the base R), correspondence analysis (cca), detrended correspondence analysis (decorana) and a wrapper for non-metric multidimensional scaling (metaMDS). Functions rda and cca mainly are designed for constrained ordination, and will be discussed later. In this chapter I describe functions decorana and metaMDS.

1.1. Detrended correspondence analysis. Detrended correspondence analysis (DCA) is done like this:

```r
> library(vegan)
> data(dune)
> ord <- decorana(dune)
```

This saves ordination results in `ord`:

```r
> ord
```

Call:
decorana(veg = dune)

Detrended correspondence analysis with 26 segments. Rescaling of axes with 4 iterations.

<table>
<thead>
<tr>
<th>DCA1</th>
<th>DCA2</th>
<th>DCA3</th>
<th>DCA4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5177</td>
<td>0.3036</td>
<td>0.1212</td>
<td>0.1426</td>
</tr>
</tbody>
</table>

Decorana values

| 0.5360 | 0.2869 | 0.0813 | 0.0481 |

Axis lengths

| 3.7004 | 3.1166 | 1.3005 | 1.4788 |

The display of results is very brief: only eigenvalues and used options are listed. Actual ordination results are not shown, but you can see them with command summary(ord), or extract the scores with command scores. The plot function also automatically knows how to access the scores.

1.2. **Non-metric multidimensional scaling.** Function metaMDS is a bit special case. The actual ordination is performed by function isoMDS of the MASS package. Function metaMDS is a wrapper to perform non-metric multidimensional scaling (NMDS) like recommended in community ordination: it uses adequate dissimilarity measures (function vegdist), then it runs NMDS several times with random starting configurations, compares results (function procrustes), and stops after finding twice a similar minimum stress solution. Finally it scales and rotates the solution, and adds species scores to the configuration as weighted averages (function wascores):

```r
> ord <- metaMDS(dune)
Run 0 stress 12.05894
Run 1 stress 11.97273
... New best solution
... procrustes: rmse 0.01950279 max resid 0.06036479
Run 2 stress 11.97273
... procrustes: rmse 3.219914e-05 max resid 7.360427e-05
*** Solution reached
> ord
Call:
metaMDS(comm = dune)

Nonmetric Multidimensional Scaling using isoMDS (MASS package)

Data: dune
Distance: bray

Dimensions: 2
Stress: 11.97273
Two convergent solutions found after 2 tries
Scaling: centring, PC rotation, halfchange scaling
Species: expanded scores based on ‘dune’

2. **Ordination graphics**

Ordination is nothing but a way of drawing graphs, and it is best to inspect ordinations only graphically (which also implies that they should not be taken too seriously).

All ordination results of vegan can be displayed with a plot command (Fig. 1):
> plot(ord)
Default plot command uses either black circles for sites and red pluses for species, or black and red text for sites and species, resp. The choices depend on the number of items in the plot and ordination method. You can override the default choice by setting type = "p" for points, or type = "t" for text. For a better control of ordination graphics you can first draw an empty plot (type = "n") and then add species and sites separately using points or text functions. In this way you can combine points and text, and you can select colours and character sizes freely (Fig. 2):

> plot(ord, type = "n")
> points(ord, display = "sites", cex = 0.8, pch = 21, col = "red", +     bg = "yellow")
> text(ord, display = "spec", cex = 0.7, col = "blue")

All vegan ordination methods have a specific plot function. In addition, vegan has an alternative plotting function ordiplot that also knows many non-vegan
ordination methods, such as `prcomp`, `cmdscale` and `isoMDS`. All vegan plot functions return invisibly an `ordiplot` object, so that you can use `ordiplot` support functions with the results (`points`, `text`, `identify`).

Function `ordirgl` (requires `rgl` package) provides dynamic three-dimensional graphics that can be spun around or zoomed into with your mouse. Function `ordiplot3d` (requires package `scatterplot3d`) displays simple three-dimensional scatterplots.

2.1. Cluttered plots. Ordination plots are often congested: there is a large number of sites and species, and it may be impossible to display all clearly. In particular, two or more species may have identical scores and are plotted over each other. Vegan does not have (yet?) automatic tools for clean plotting in these cases, but here some methods you can try:

- Zoom into graph setting axis limits `xlim` and `ylim`. You must typically set both, because vegan will maintain equal aspect ratio of axes.
- Use points and label only some of these with `identify` command.
- Use `select` argument in ordination `text` and `points` functions to only show the specified items.
- Use automatic `ordilabel` function that uses opaque background to the text: some text labels will be covered, but the uppermost are readable.
- Use automatic `orditorp` function that uses text only if this can be done without overwriting previous labels, but points in other cases.
- Use automatic `ordipointlabel` function that uses both points and text labels, and tries to optimize the location of the text to avoid overwriting.
- Use interactive `orditkplot` function that draws both points and labels for ordination scores, and allows you to drag labels to better positions. You can export the results of the edited graph to encapsulated postscript, pdf, png or jpeg files, or copy directly to encapsulated postscript, or return the edited positions to R for further processing.

2.2. Adding items to ordination plots. Vegan has a group of functions for adding information about classification or grouping of points onto ordination diagrams. Function `ordihull` adds convex hulls, `ordiellipse` (which needs package `ellipse`) adds ellipses of standard deviation, standard error or confidence areas, and `ordispider` combines items to their centroid (Fig. 3):

```r
> data(dune.env)
> attach(dune.env)
> plot(ord, disp = "sites", type = "n")
> ordihull(ord, Management, col = "blue")
> ordiellipse(ord, Management, col = 3, lwd = 2)
> ordispider(ord, Management, col = "red")
> points(ord, disp = "sites", pch = 21, col = "red", bg = "yellow",
+ cex = 1.3)
```

In addition, you can overlay a cluster dendrogram from `hclust` using `ordicluster` or a minimum spanning tree from `spantree` with its `lines` function. Segmented arrows can be added with `ordiarrows`, lines with `ordisegments` and regular grids with `ordigrid`.

3. Fitting environmental variables

Vegan provides two functions for fitting environmental variables onto ordination:

- `envfit` fits vectors of continuous variables and centroids of levels of class variables (defined as `factor` in R). The direction of the vector shows the
Figure 3. Convex hull, standard error ellipse and a spider web diagram for Management levels in ordination.

direction of the gradient, and the length of the arrow is proportional to the correlation between the variable and the ordination.

- ordisurf (which requires package mgcv) fits smooth surfaces for continuous variables onto ordination using thinplate splines with cross-validatory selection of smoothness.

Function envfit can be called with a formula interface, and it optionally can assess the “significance” of the variables using permutation tests:

```r
> ord.fit <- envfit(ord ~ A1 + Management, data = dune.env,
+ perm = 1000)
> ord.fit
***VECTORS

 NMDS1 NMDS2 r2 Pr(>|r|)
A1 0.97950 0.20146 0.3689 0.01798 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
P values based on 1000 permutations.

***FACTORS:

Centroids:

 NMDS1 NMDS2
ManagementBF -0.4532 0.0011
ManagementHF -0.2712 -0.1209
ManagementNM 0.3266 0.5688
ManagementSF 0.1260 -0.4686

Goodness of fit:

 r2 Pr(>|r|)
Management 0.4206 0.008991 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
P values based on 1000 permutations.

The result can be drawn directly or added to an ordination diagram (Fig. 4):
Figure 4. Fitted vector and smooth surface for the thickness of A1 horizon (A1, in cm), and centroids of Management levels.

```r
> plot(ord, dis = "site")
> plot(ord.fit)
```

Function `ordisurf` directly adds a fitted surface onto ordination, but it returns the result of the fitted thinplate spline `gam` (Fig. 4):

```r
> ordisurf(ord, A1, add = TRUE)
```

This is mgcv 1.6-1. For overview type `help("mgcv-package")`.

Family: gaussian

Link function: identity

Formula:

\[y \sim s(x1, x2, k = \text{knots}) \]

Estimated degrees of freedom:

2 total = 3

GCV score: 3.940997

4. Constrained ordination

Vegan has three methods of constrained ordination: constrained or “canonical” correspondence analysis (function `cca`), redundancy analysis (function `rda`) and constrained analysis of proximities (function `capscale`). All these functions also can have a conditioning term that is “partialled out”. I only demonstrate `cca`, but all functions accept similar commands and can be used in the same way.

The preferred way is to use `formula` interface, where the left hand side gives the community data frame and the right hand side lists the constraining variables:

```r
> ord <- cca(dune ~ A1 + Management, data = dune.env)
> ord
```

Call: `cca(formula = dune ~ A1 + Management, data = dune.env)`

Inertia Rank

<table>
<thead>
<tr>
<th>Total</th>
<th>2.1153</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constrained</td>
<td>0.7798</td>
</tr>
</tbody>
</table>
Unconstrained 1.3355 15
Inertia is mean squared contingency coefficient

Eigenvalues for constrained axes:
CCA1 CCA2 CCA3 CCA4
0.31875 0.23718 0.13217 0.09168

Eigenvalues for unconstrained axes:
CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8
0.362024 0.202884 0.152661 0.134549 0.110957 0.079982 0.076698 0.055267
CA9 CA10 CA11 CA12 CA13 CA14 CA15
0.044361 0.041528 0.031699 0.017786 0.011642 0.008736 0.004711
The results can be plotted with (Fig. 5):
> plot(ord)
There are three groups of items: sites, species and centroids (and biplot arrows) of environmental variables. All these can be added individually to an empty plot, and all previously explained tricks of controlling graphics still apply.

It is not recommended to perform constrained ordination with all environmental variables you happen to have: adding the number of constraints means slacker constraint, and you finally end up with solution similar to unconstrained ordination. In that case it is better to use unconstrained ordination with environmental fitting. However, if you really want to do so, it is possible with the following shortcut in formula:
> cca(dune ~ ., data = dune.env)
Call: cca(formula = dune ~ A1 + Moisture + Management + Use + Manure, data = dune.env)

Inertia Rank
Total 2.1153
Constrained 1.5032 12
Unconstrained 0.6121 7
Inertia is mean squared contingency coefficient
Some constraints were aliased because they were collinear (redundant)
Eigenvalues for constrained axes:

CCA1 CCA2 CCA3 CCA4 CCA5 CCA6 CCA7 CCA8 CCA9
0.46713 0.34102 0.17606 0.15317 0.09528 0.07027 0.05887 0.04993 0.03183
CCA10 CCA11 CCA12
0.02596 0.02282 0.01082

Eigenvalues for unconstrained axes:

CA1 CA2 CA3 CA4 CA5 CA6 CA7
0.27237 0.10876 0.08975 0.06305 0.03489 0.02529 0.01798

4.1. Significance tests. Vegan provides permutation tests for the significance of constraints. The test mimics standard analysis of variance function (anova), and the default test analyses all constraints simultaneously:

```r
> anova(ord)
```

Permutation test for cca under reduced model

Model: `cca(formula = dune ~ A1 + Management, data = dune.env)`

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Chisq</th>
<th>F</th>
<th>N.Perm</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>4</td>
<td>0.7798</td>
<td>2.1896</td>
<td>199</td>
<td>0.005 **</td>
</tr>
<tr>
<td>Residual</td>
<td>15</td>
<td>1.3355</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The function actually used was `anova.cca`, but you do not need to give its name in full, because R automatically chooses the correct `anova` variant for the result of constrained ordination.

The `anova.cca` function tries to be clever and lazy: it automatically stops if the observed permutation significance probably differs from the targeted critical value (0.05 as default), but it will continue long in uncertain cases. You must set `step` and `perm.max` to same values to override this behaviour.

It is also possible to analyse terms separately:

```r
> anova(ord, by = "term", permu = 200)
```

Permutation test for cca under reduced model

Terms added sequentially (first to last)

Model: `cca(formula = dune ~ A1 + Management, data = dune.env)`

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Chisq</th>
<th>F</th>
<th>N.Perm</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1</td>
<td>0.2248</td>
<td>2.5245</td>
<td>199</td>
<td>0.010 **</td>
</tr>
<tr>
<td>Management</td>
<td>3</td>
<td>0.5550</td>
<td>2.0780</td>
<td>199</td>
<td>0.005 **</td>
</tr>
<tr>
<td>Residual</td>
<td>15</td>
<td>1.3355</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In this case, the function is unable to automatically select the number of iterations. This test is sequential: the terms are analysed in the order they happen to be in the model. You can also analyse significances of marginal effects (“Type III effects”):

```r
> anova(ord, by = "mar")
```

Permutation test for cca under reduced model

Marginal effects of terms

Model: `cca(formula = dune ~ A1 + Management, data = dune.env)`

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>Chisq</th>
<th>F</th>
<th>N.Perm</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1</td>
<td>0.1759</td>
<td>1.9761</td>
<td>399</td>
<td>0.0225 *</td>
</tr>
</tbody>
</table>
Moreover, it is possible to analyse significance of each axis:

```r
> anova(ord, by = "axis", perm = 500)
```

Permutation test for cca under reduced model

```
Model: cca(formula = dune ~ A1 + Management, data = dune.env)

Df    Chisq F N.Perm Pr(>F)
CCA1   1  0.3187 3.5801 199 0.01 **
CCA2   1  0.2372 2.6640 499 0.05 *
CCA3   1  0.1322 1.4845 99  0.29
CCA4   1  0.0917 1.0297 99  0.38
Residual 15 1.3355
```

Now the automatic selection works, but typically some of your axes will be very close to the critical value, and it may be useful to set a lower `perm.max` than the default 10000 (typically you use higher limits than in these examples: we used lower limits to save time when this document is automatically generated with this package).

4.2. Conditioned or partial ordination

All constrained ordination methods can have terms that are partialled out from the analysis before constraints:

```r
> ord <- cca(dune ~ A1 + Management + Condition(Moisture), + data = dune.env)
> ord
```

```
Call: cca(formula = dune ~ A1 + Management + Condition(Moisture), data = dune.env)

Inertia Rank
Total                2.1153
Conditional          0.6283   3
Constrained          0.5109   4
Unconstrained        0.9761  12

Inertia is mean squared contingency coefficient

Eigenvalues for constrained axes:
  CCA1   CCA2   CCA3   CCA4
0.24932 0.12091 0.08160 0.05904

Eigenvalues for unconstrained axes:
  CA1    CA2    CA3    CA4    CA5    CA6    CA7    CA8
0.306366 0.131911 0.115157 0.109469 0.077242 0.075754 0.048714 0.037582
  CA9    CA10   CA11   CA12
0.031058 0.021024 0.012542 0.009277

This partials out the effect of Moisture before analysing the effects of A1 and Management. This also influences the significances of the terms:

```r
> anova(ord, by = "term", perm = 500)
```
Permutation test for cca under reduced model
Terms added sequentially (first to last)

Model: cca(formula = dune ~ A1 + Management + Condition(Moisture), data = dune.env)

<table>
<thead>
<tr>
<th>Df</th>
<th>Chisq</th>
<th>F</th>
<th>N.Perm</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1</td>
<td>0.1154</td>
<td>1.4190</td>
<td>99</td>
</tr>
<tr>
<td>Management</td>
<td>3</td>
<td>0.3954</td>
<td>1.6205</td>
<td>99</td>
</tr>
<tr>
<td>Residual</td>
<td>12</td>
<td>0.9761</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

If we had a designed experiment, we may wish to restrict the permutations so that the observations only are permuted within levels of strata:

> anova(ord, by = "term", perm = 500, strata = Moisture)

Permutation test for cca under reduced model
Terms added sequentially (first to last)
Permutations stratified within 'Moisture'

Model: cca(formula = dune ~ A1 + Management + Condition(Moisture), data = dune.env)

<table>
<thead>
<tr>
<th>Df</th>
<th>Chisq</th>
<th>F</th>
<th>N.Perm</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1</td>
<td>0.1154</td>
<td>1.4190</td>
<td>99</td>
</tr>
<tr>
<td>Management</td>
<td>3</td>
<td>0.3954</td>
<td>1.6205</td>
<td>99</td>
</tr>
<tr>
<td>Residual</td>
<td>12</td>
<td>0.9761</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1