MATLAB Assignment #1 Kinematics

due Tuesday 3/14/17, by start of class

NO LATE ASSIGNMENTS WILL BE ACCEPTED!

MATLAB Assignment #1 focuses on the forward and inverse pose kinematics of the human arm. The text is Section 3.1.2 of Dr. Bob’s biomechanics NotesBook. Use the simplified planar 3-dof human arm model where L_1 is the upper arm length, L_2 is the forearm length, L_3 is the hand length, θ_1 is the absolute shoulder pitch angle, θ_2 is the relative elbow pitch angle, and θ_3 is the relative wrist pitch angle.

Your assignment is to replicate the kinematics trajectory plots given in the NotesBook. Choose either the adult female or adult male model, no need to do both – clearly state your choice in your memo. For both cases below, animate the simulated human arm to the screen (the FPK m-file in the Supplement shows you how to do this). Though this assignment focuses on the trajectory examples only, you are encouraged to complete the snapshot examples as well, for validation (compare to NotesBook results).

1. Perform forward pose kinematics simulation in MATLAB according to the same inputs as in the NotesBook. Artificially map the entire motion to a time range from 0 to 3 sec. The MATLAB program is given for you on-line in the 4670/5670 Supplement – feel free to adapt this for your m-file. Plot:
 - Input angles ($\theta_1, \theta_2, \theta_3$) vs. time
 - FPK results (x, y, ϕ) vs. time
 - FPK results (y vs. x; square axes with equal X, Y, ranges)
 - Simulated muscle lengths (biceps and triceps) vs. time
 - Simulated muscle angles (biceps and triceps) vs. time
 - Initial and final arm poses (y vs. x; square axes with equal X, Y, ranges).

2. Perform inverse pose kinematics simulation in MATLAB according to the same inputs as in the NotesBook. Use exactly $N = 48$ steps, artificially mapped to a time range from 0 to 2 sec. The MATLAB program is not given for you in the 4670/5670 Supplement, but you can modify the above m-file. Plot:
 - Input Cartesian pose (x, y, ϕ) vs. time
 - IPK results ($\theta_1, \theta_2, \theta_3$) vs. time
 - Simulated muscle lengths (biceps and triceps) vs. time
 - Simulated muscle angles (biceps and triceps) vs. time
 - Initial and final arm poses (y vs. x; square axes with equal X, Y, ranges).

The first page of your MATLAB Assignment #1 report must be a one-page memo. You are expected to work with others on the concepts and MATLAB strategies – however, all computer programs and written work must be strictly individual. Start early and ask questions at any time – the answer key for this assignment is in the NotesBook.
MATLAB Assignment #2 Pseudostatics
due Tuesday 3/28/17, by start of class

NO LATE ASSIGNMENTS WILL BE ACCEPTED!

MATLAB Assignment #2 focuses on the pseudostatics simulation of the human elbow joint. The text is Section 3.2.2 of Dr. Bob’s biomechanics NotesBook. Use the further simplified planar 1-dof human arm model where L_1 is the upper arm length, L_2 is the forearm length, L_3 is the hand length, $\theta_1 = 0$ is the absolute shoulder pitch angle, θ_2 is the relative elbow pitch angle, and $\theta_3 = 0$ is the relative wrist pitch angle. A constant end load (vertical, down) of $W_L = 22.24$ N (5 lb) is given at the fingertips.

Your assignment is to replicate the pseudostatics trajectory plots given in the NotesBook. Choose either the adult female or adult male model, whichever you chose in MATLAB Assignment #1. For the pseudostatics simulation, animate the simulated human arm to the screen.

1. Perform biceps pseudostatics simulation in MATLAB according to the same inputs as in the NotesBook, for $t_B = 0$. Plot:
 - Cycloidal input angle θ_2 vs. time
 - Biceps pseudostatics results (t_B vs. time)
 - Biceps pseudostatics results (F_{Ex} and F_{Ey} vs. time)
 - Simulated muscle lengths (biceps and triceps) vs. time
 - Simulated muscle angles (biceps and triceps) vs. time
 - Initial and final arm poses (y vs. x; square axes with equal X, Y, ranges).

Discuss your results. As the NotesBook points out, this simulation is not acceptable since there are negative biceps tensions for a portion of the motion; therefore:

2. Perform triceps pseudostatics simulation in MATLAB according to the same inputs as in the NotesBook, for $t_B = 0$. Plot:
 - Triceps pseudostatics results (t_T vs. time)
 - Triceps pseudostatics results (F_{Ex} and F_{Ey} vs. time)

The other plots will be identical to those from 1 above. Discuss your results. As the NotesBook points out, this simulation is still not acceptable since there are negative triceps tensions for a portion of the motion; therefore:

3. Perform acceptable biceps/triceps pseudostatics simulation in MATLAB according to the same inputs as in the NotesBook. Plot:
 - Biceps/triceps pseudostatics results (t_B and t_T vs. time)
 - Biceps/triceps pseudostatics results (F_{Ex} and F_{Ey} vs. time)

Again, the other plots will be identical to those from 1 above. Discuss your results.

The first page of your MATLAB Assignment #2 report must be a one-page memo. You are expected to work with others on the concepts and MATLAB strategies – however, all computer work and written work must be strictly individual. Start early and ask questions at any time – the answer key for this assignment is in the NotesBook.
MATLAB Assignment #3 Dynamics
due Tuesday 4/11/17, by start of class

NO LATE ASSIGNMENTS WILL BE ACCEPTED!

MATLAB Assignment #3 focuses on the dynamics simulation of the human elbow joint. The text is Section 3.3.2 of Dr. Bob’s biomechanics NotesBook. Use the same simplified planar 1-dof human arm model from pseudostatics where \(L_1 \) is the upper arm length, \(L_2 \) is the forearm length, \(L_3 \) is the hand length, \(\theta_1 = 0 \) is the absolute shoulder pitch angle, \(\theta_2 \) is the relative elbow pitch angle, and \(\theta_3 = 0 \) is the relative wrist pitch angle.

Your assignment is to replicate the dynamics trajectory plots given in the NotesBook. Choose either the adult female or adult male model, whichever you chose in MATLAB Assignments #1&2. For the dynamics simulation, animate the simulated human arm to the screen.

1. Perform **biceps dynamics** simulation in MATLAB according to the same inputs as in the NotesBook (use only \(t_F = 0.5 \) sec). Plot:
 - Cycloidal input angle \(\theta_2 \) and derivatives through jerk vs. time
 - CG accelerations vs. time
 - Biceps dynamics results (\(t_B \) vs. time)
 - Biceps dynamics results (\(F_{Ex} \) and \(F_{Ey} \) vs. time)
 - Simulated muscle lengths (biceps and triceps) vs. time
 - Simulated muscle angles (biceps and triceps) vs. time
 - Initial and final arm poses (\(y \) vs. \(x \); square axes with equal \(X \), \(Y \), ranges).

 Discuss your results. As the NotesBook points out, this simulation is not acceptable since there are negative biceps tensions at times; therefore:

2. Perform **triceps dynamics** simulation in MATLAB according to the same inputs as in the NotesBook (use only \(t_F = 0.5 \) sec). Plot:
 - Triceps dynamics results (\(t_T \) vs. time)
 - Triceps dynamics results (\(F_{Ex} \) and \(F_{Ey} \) vs. time)

 The other plots will be identical to those from 1. above. Discuss your results. As the NotesBook points out, this simulation is still not acceptable since there are negative triceps tensions for a portion of the motion; therefore:

3. Perform **acceptable biceps/triceps dynamics** simulation in MATLAB according to the same inputs as in the NotesBook. Plot:
 - Biceps/triceps dynamics results (\(t_B \) and \(t_T \) vs. time)
 - Biceps/triceps dynamics results (\(F_{Ex} \) and \(F_{Ey} \) vs. time)

Again, the other plots will be identical to those from 1 above. Discuss your results.

The first page of your MATLAB Assignment #3 report must be a one-page memo. You are expected to work with others on the concepts and MATLAB strategies – however, all computer work and written work must be strictly individual. Start early and ask questions at any time – the answer key for this assignment is in the NotesBook.