Adapting Planar Solid Oxide Fuel Cells for use with Solid Fuel Sources in the Production of Distributed Power

Greg Kremer, Gerri Botte, Ben Stuart and Dave Bayless
Ohio University
Eric Barringer, Ted Ohrn
SOFCo-EFS Holdings LLC
May 24, 2004
Program Objectives

- Quantify impacts of synthesis gas composition on performance of a commercial planar solid oxide fuel cell system (cell and stack)
 - H$_2$S content
 - CO/H$_2$ ratio and energy content of gas
 - Particulate
 - Metal content

- Demonstrate long term operation of pSOFCs using actual sold fuel-derived synthesis gas

- Integrate CHP into distributed H$_2$ production
Project Approach

Distributed CHP and Hydrogen

- Develop fuel cell CHP from solid fuels
- Test pSOFCs for tolerance to syngas contaminants using single cell and stack platforms
- Use of CO tolerant pSOFCs allow H_2/CO separation without gas shift reactors
- Integrate CHP into distributed H_2 production
Project Approach

Distributed CHP and Hydrogen

- Fuel Feeder
- Gasifier
- Electrostatic Cyclone
- Final Particle Control
- Reaction chamber
- Return from Cyclone
- H$_2$O + O$_2$
- CO/H$_2$ Separation
- CO + H$_2$ to SOFCs
- H$_2$ to automotive fuel

H$_2$ to automotive fuel
Project Approach

Solid Oxide Fuel Cells

Fuel: CO and H₂

\[\text{CO} + \text{H}_2 + \text{O}_2 \rightarrow 2\text{e}^- + \text{H}_2\text{O} + \text{CO}_2 \]

Useful Power

Air

\[\text{O}_2 + 4\text{e}^- \rightarrow 2\text{O}^{2-} \]

La-MnO₃ Cathode

Ni-YSCZ Anode

YSZ electrolyte
Technical Barriers and Targets

HFCIT Program Plan

• DOE Technical Barriers for Distributed Generation
 – Improved CO tolerance
 – Develop CHP fuel cell systems
 – Verify integrated stationary fuel cell systems
 – Mitigate technical barriers to stationary fuel cells

• DOE Technical Targets for 2010
 – 40,000 hours durability
 – $1000/kWe
Budget

Budget and Expenditures

<table>
<thead>
<tr>
<th>Category</th>
<th>Budget</th>
<th>Expenditures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>$673,269</td>
<td>$175,157</td>
</tr>
<tr>
<td>Fringe Benefits</td>
<td>$140,579</td>
<td>$37,029</td>
</tr>
<tr>
<td>Travel</td>
<td>$16,500</td>
<td>$6,523</td>
</tr>
<tr>
<td>Equipment</td>
<td>$107,749</td>
<td>$27,989</td>
</tr>
<tr>
<td>Supplies</td>
<td>$84,483</td>
<td>$61,058</td>
</tr>
<tr>
<td>Contractual</td>
<td>$419,990</td>
<td>$111,096</td>
</tr>
<tr>
<td>Construction</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Other</td>
<td>$263,165</td>
<td>$84,483</td>
</tr>
<tr>
<td>Total Direct Charges</td>
<td>$1,705,735</td>
<td>$503,335</td>
</tr>
<tr>
<td>Indirect Charges</td>
<td>$589,835</td>
<td>$125,768</td>
</tr>
<tr>
<td>Total</td>
<td>$2,295,570</td>
<td>$629,103</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Share Type</th>
<th>Budget</th>
<th>Expenditures</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Share</td>
<td>$1,926,744</td>
<td>$505,133</td>
</tr>
<tr>
<td>Cost Share</td>
<td>$368,826</td>
<td>$123,970</td>
</tr>
</tbody>
</table>
Project Safety

Hydrogen, Carbon Monoxide and H₂S Concerns

• FMEA Analysis
• Chemical hygiene training
• H₂S training
• Gas containment and scrubber system
• Operational SOP’s
• PSD’s – gas monitors, SKAT packs, room monitors
• Verification gases to test monitors/detectors
• Notification and review with local authorities for the types and quantities of gases used
<table>
<thead>
<tr>
<th>Project Timeline</th>
<th>Completion Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Modeling syngas/SOFC interface</td>
<td>Aug 03-Dec 04</td>
</tr>
<tr>
<td>2. Fabricate/install syngas system</td>
<td>Sep 03-May 04</td>
</tr>
<tr>
<td>3. Fabricate/install cell test stands</td>
<td>Sep 03-May 04</td>
</tr>
<tr>
<td>4. SOFC training for interns</td>
<td>Apr 04-Jun 04</td>
</tr>
<tr>
<td>5. SOFC material analysis baseline</td>
<td>May 04-Aug 04</td>
</tr>
<tr>
<td>6. Synthetic syngas testing</td>
<td>May 04-Dec 05</td>
</tr>
<tr>
<td>- 6.1 Baseline syngas</td>
<td></td>
</tr>
<tr>
<td>- 6.2 Effect of Hg</td>
<td></td>
</tr>
<tr>
<td>- 6.3 Effect of sulfur</td>
<td></td>
</tr>
<tr>
<td>- 6.4 Effect of particulate</td>
<td></td>
</tr>
<tr>
<td>- 6.5 Effect of energy content</td>
<td></td>
</tr>
<tr>
<td>- 6.6 Effect of O_2 in oxidizer</td>
<td></td>
</tr>
<tr>
<td>7. Electrostatic separation testing</td>
<td>Aug 04-Sep 06</td>
</tr>
<tr>
<td>8. H_2:CO separation or shift</td>
<td>Aug 05-Aug 07</td>
</tr>
<tr>
<td>9. Integration of fuel cells/gasifier</td>
<td>Jan 06-Aug 07</td>
</tr>
</tbody>
</table>
Project Accomplishments

Gas Delivery (including H₂S)
Project Accomplishments

Gas Delivery (including H₂S)
Project Accomplishments

Test Stands
Project Accomplishments

Fuel Cell

- Edge of Manifold
- Discoloration along Crack line
- Markings possibly indicating presence of water
- Crack line
Project Accomplishments

Modeling

- Aspen platform
- Electrochemical model
- Thermal model
- Reforming/Gas Cleaning model
- Flow model
Interactions and Collaborations

Academic and Industrial Partnerships

- SOFCo-EFS (Fuel Cells)
- Case Western Reserve University
- University of Cincinnati
- State of Ohio’s Air Quality Development Authority
- BAARD (Power Generation)
- Enercon (Gasification/Steam Reforming)
Future Work

Near and Long Term Plans

• Quantify impacts of synthesis gas composition on performance of a commercial planar solid oxide fuel cell system (cell and stack)
 – H$_2$S content
 – CO/H$_2$ ratio and energy content of gas
 – Particulate
 – Metal content

• Demonstrate long term operation of pSOFCs using actual sold fuel-derived synthesis gas

• Integrate CHP into distributed H$_2$ production
Future Work

Near and Long Term Plans

- Fuel Feeder
- Electrostatic Cyclone
- Gasifier
- Reaction chamber
- Return from Cyclone
- Final Particle Control
- CO/H₂ Separation
- CO + H₂ to SOFCs
- H₂O + O₂
- H₂ to automotive fuel