Skip to: Main Content Search Navigation Secondary Navigation

Ohio University is OPEN.

Power has been restored to Seigfred Hall. The building has resumed normal operations. More Information
 

Razvan Bunescu

Associate Professor
Electrical Engineering and Computer Science, Center for Scientific Computing and Immersive Technologies
Stocker Center 341
bunescu@ohio.edu
Phone: 740.593.1579

http://ace.cs.ohio.edu/~razvan

Razvan Bunescu received a Ph.D. degree in Computer Science from the University of Texas at Austin in 2007, with a thesis on machine learning methods for information extraction. His main research interests are in machine learning and computational linguistics, with a recent focus on applications in biomedical informatics, software engineering, and music analysis.


Research Interests: machine learning, natural language processing, biomedical informatics, music analysis

All Degrees Earned: Ph.D., Computer Sciences, University of Texas at Austin, 2007; M.S., Computer Science, University Politehnica of Bucharest, 1999; B.S., Computer Science, University Politehnica of Bucharest, 1998

Other (2)

  • Marling, C., Struble, N., Bunescu, R., Shubrook, J., Schwartz, F. (2013). A Consensus Perceived Glycemic Variability Metric.
  • Marling, C., Struble, N., Bunescu, R., Shubrook, J., Schwartz, F. (2012). A Consensus Perceived Glycemic Variability Metric. Bethesda, Maryland: Diabetes Technology Meeting.

Conference Proceeding (38)

  • Chen, C., Bunescu, R., Xu, L., Liu, C. (2016). Tone Classification in Mandarin Chinese using Convolutional Neural Networks. San Francisco, CA: International Speech Communication Association (ISCA) Conference (Interspeech); http://www.isca-speech.org/archive/Interspeech_2016/pdfs/0528.PDF.
  • Gray, P., Bunescu, R. (2016). A Neural Greedy Model for Voice Separation in Symbolic Music . New York, NY: International Symposium on Music Information Retrieval; 782-788. https://wp.nyu.edu/ismir2016/wp-content/uploads/sites/2294/2016/07/296_Paper.pdf.
  • Marling, C., Xia, L., Bunescu, R., Schwartz, F. (2016). Machine Learning Experiments with Noninvasive Sensors for Hypoglycemia Detection. New York, New York: http://sites.google.com/site/ijcai2016kdhealth/accepted-papers.
  • Ye, X., Shen, H., Ma, X., Bunescu, R., Liu, C. (2016). From Word Embeddings To Document Similarities for Improved Information Retrieval in Software Engineering. Austin, TX: ACM/IEEE International Conference on Software Engineering (ICSE); 404-415 . http://dl.acm.org/citation.cfm?id=2884862.
  • Marling, C., Bunescu, R., Baradar-Bokaie, B., Schwartz, F. (2015). Case-Based Reasoning as a Prelude to Big Data Analysis: A Case Study. Frankfurt, Germany: 175-183.
  • Ye, X., Bunescu, R., Liu, C. (2014). Learning to Rank Relevant Files for Bug Reports using Domain Knowledge. 22nd ACM SIGSOFT International Symposium on the Foundations of Software Engineering (FSE); 11. http://dl.acm.org/citation.cfm?id=2635874.
  • Plis, K., Bunescu, R., Marling, C., Shubrook, J., Schwartz, F. (2014). A Machine Learning Approach to Predicting Blood Glucose Levels for Diabetes Management . Palo Alto, CA: AAAI Press; 35-39.
  • Bunescu, R., Struble, N., Marling, C., Shubrook, J., Schwartz, F. (2013). Blood Glucose Level Prediction using Physiological Models and Support Vector Regression. International Conference on Machine Learning and Applications (ICMLA) 2013; http://www.icmla-conference.org/icmla13/.
  • Dandala, B., Mihalcea, R., Bunescu, R. (2013). Multilingual Word Sense Disambiguation Using Wikipedia. Asian Federation of Natural Language Processing; http://aclweb.org/anthology//I/I13/I13-1000.pdf.
  • Dandala, B., Hokamp, C., Mihalcea, R., Bunescu, R. (2013). Sense Clustering Using Wikipedia. Proceedings of RANLP; http://lml.bas.bg/ranlp2013/proceedings.php.
  • Shen, H., Bunescu, R., Mihalcea, R. (2013). Coarse to Fine Grained Sense Disambiguation in Wikipedia. Association for Computational Linguistics; http://aclweb.org/anthology//S/S13/S13-1003.pdf.
  • Shen, H., Bunescu, R., Mihalcea, R. (2012). Sense and Reference Disambiguation in Wikipedia. Mumbai: 24th International Conference on Computational Linguistics; 1111-1120. http://www.aclweb.org/anthology/C12-2108.
  • Marling, C., Bunescu, R., Shubrook, J., Schwartz, F. (2012). System Overview: The 4 Diabetes Support System. Lyon: Workshop Proceedings of the Twentieth International Conference on Case-Based Reasoning; 81-86.
  • Bunescu, R. (2012). An Adaptive Clustering Model that Integrates Expert Rules and N-gram Statistics for Coreference Resolution. Montpellier: 20th European Conference on Artificial Intelligence; 242: 897-898. http://www.booksonline.iospress.nl/Content/View.aspx?piid=31730.
  • Bunescu, R. (2012). Adaptive Clustering for Coreference Resolution with Deterministic Rules and Web-Based Language Models. Stroudsburg, PA: First Joint Conference on Lexical and Computational Semantics; 1: 11--19. http://dl.acm.org/citation.cfm?id=2387639.
  • Dandala, B., Mihalcea, R., Bunescu, R. (2012). Towards building a multilingual semantic network: identifying interlingual links in Wikipedia. Stroudsburg, PA: First Joint Conference on Lexical and Computational Semantics; 1: 30-37. http://dl.acm.org/citation.cfm?id=2387641.
  • Marling, C., Wiley, M., Cooper, T., Bunescu, R., Shubrook, J., Schwartz, F. (2011). "The 4 Diabetes Support System: A Case Study in CBR Research and Development," in Case-Based Reasoning Research and Development: 19th International Conference on Case-Based Reasoning, ICCBR 2011 Proceedings. Berlin: Springer.
  • Wiley, M., Bunescu, R., Marling, C., Shubrook, J., Schwartz, F. (2011). Automatic Detection of Excessive Glycemic Variability for Diabetes Management. Honolulu, Hawaii: The 10th International Conference on Machine Learning Applications; http://www.icmla-conference.org/icmla11/index.htm.
  • Marling, C., Wiley, M., Bunescu, R., Shubrook, J., Schwartz, F. (2011). Emerging Applications for Intelligent Diabetes Management. San Francisco, CA: The 23rd Annual Conference on Innovative Applications of Artificial Intelligence (IAAI); 1668-1673. http://www.aaai.org/ocs/index.php/IAAI/IAAI-11.
  • Mohler, M., Bunescu, R., Rada, M. (2011). Learning to Grade Short Answer Questions using Semantic Similarity Measures and Dependency Graph Alignments. Portland, OR: The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL/HLT); 753-762. http://www.acl2011.org/.
  • Bunescu, R., Huang, Y. (2010). Learning the Relative Usefulness of Questions in Community QA. Cambridge, MA: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP); 97-107. http://www.aclweb.org/anthology-new/D/D10/D10-1010.pdf.
  • Bunescu, R., Yunfeng, H. (2010). A Utility-Driven Approach to Question Ranking. Beijing: Proceedings of the 23rd International Conference on Computational Linguistics (COLING); 125-133. http://aclweb.org/anthology-new/C/C10/C10-1015.pdf.
  • Bunescu, R. (2008). Learning with Probabilistic Features for Improved Pipeline Models. Waikiki, Honolulu, Hawaii: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).
  • Bunescu, R., Mooney, R. (2007). Learning to Extract Relations from the Web using Minimal Supervision. Prague, Czech Republic: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics (ACL).
  • Bunescu, R., Mooney, R. (2007). Multiple Instance Learning for Sparse Positive Bags. Corvallis, OR: Proceedings of the 24th International Conference on Machine Learning (ICML).
  • Bunescu, R., Mooney, R., Ramani, A., Marcotte, E. (2006). Integrating Co-occurrence Statistics with Information Extraction for Robust Retrieval of Protein Interactions from Medline. New York City, NY: Proceedings of the HLT-NAACL Workshop on Linking Natural Language Processing and Biology: Towards deeper biological literature analysis (BioNLP-2006); 49-56.
  • Bunescu, R., Pasca, M. (2006). Using Encyclopedic Knowledge for Named Entity Disambiguation. Trento, Italy: Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics (EACL).
  • Bunescu, R., Mooney, R. (2005). Subsequence Kernels for Relation Extraction. Vancouver, BC: Proceedings of the 19th Conference on Neural Information Processing Systems (NIPS).
  • Bunescu, R., Mooney, R. (2005). A Shortest Path Dependency Kernel for Relation Extraction. Vancouver, BC: Proceedings of the Joint Conference on Human Language Technology / Empirical Methods in Natural Language Processing (HLT/EMNLP).
  • Ramani, A., Marcotta, E., Bunescu, R., Mooney, R. (2005). Using Biomedical Literature Mining to Consolidate the Set of Known Human Protein-Protein Interactions. Detroit, MI: Proceedings of the ACL-ISMB Workshop on Linking Biological Literature, Ontologies and Databases: Mining Biological Semantics,; 46--53.
  • Bunescu, R., Mooney, R. (2004). Collective Information Extraction with Relational Markov Networks. Barcelona, Spain: Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL).
  • Bunescu, R., Mooney, R. (2004). Relational Markov Networks for Collective Information Extraction. Banff, Canada: Proceedings of the ICML-2004 Workshop on Statistical Relational Learning and its Connections to Other Fields (SRL-2004).
  • Yi, J., Nasukawa, T., Bunescu, R., Niblack, W. (2003). Sentiment Analyzer: Extracting Sentiments about a Given Topic using Natural Language Processing Techniques. Melbourne, Florida: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM).
  • Bunescu, R., Ge, R., Kate, R., Marcotte, E., Mooney, R., Ramani, A., Wong, Y. (2003). Learning to Extract Proteins and their Interactions from Medline Abstracts. Washington DC: Proceedings of the ICML-2003 Workshop on Machine Learning in Bioinformatics; 46-53.
  • Bunescu, R. (2003). Associative Anaphora Resolution: A Web-Based Approach. Budapest, Hungary: Proceedings of the EACL 2003 Workshop on The Computational Treatment of Anaphora.
  • Harabagiu, S., Moldovan, D., Pasca, M., Mihalcea, R., Surdeanu, M., Bunescu, R., Girju, R., Rus, V., Morarescu, P. (2001). The Role of Lexico-Semantic Feedback in Open-Domain Textual Question-Answering. Toulouse, France: Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics (ACL).
  • Harabagiu, S., Bunescu, R., Maiorano, S. (2001). Text and Knowledge Mining for Coreference Resolution. Pittsburgh, PA: Proceedings of the 2nd Meeting of the North American Chapter of the Association for Computational Linguistics (NAACL).
  • Harabagiu, S., Moldovan, D., Pasca, M., Mihalcea, R., Surdeanu, M., Bunescu, R., Girju, R., Rus, V., Morarescu, P. (2000). FALCON: Boosting Knowledge for Answer Engines. Gaithersburg, Maryland: Proceedings of the 9th Text REtrieval Conference (TREC 2000).

Journal Article, Professional Journal (1)

Journal Article, Academic Journal (7)

  • DiTomaso, D., Kodi, A., Louri, A., Bunescu, R. (2015). Resilient and Power-Efficient Multi-Function Channel Buffers in Network-on-Chip Architectures. 12. IEEE Transactions on Computers; 64: 3555-3568. http://doi.ieeecomputersociety.org/10.1109/TC.2015.2401013.
  • Ye, X., Bunescu, R., Liu, C. (2015). Mapping Bug Reports to Relevant Files: A Ranking Model, a Fine-grained Benchmark, and Feature Evaluation. IEEE Transactions on Software Engineering; 99: 26. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7270328.
  • Marling, C., Struble, N., Bunescu, R., Shubrook, J., Schwartz, F. (2013). A Consensus Perceived Glycemic Variability Metric. 4. Journal of Diabetes Science and Technology; 7: 871-879.
  • Marling, C., Bunescu, R., Shubrook, J., Schwartz, F. (2012). Emerging Applications for Intelligent Diabetes Management. 2. AI Magazine; 33: 67-78.
  • Bunescu, R., Ge, R., Kate, R., Marcotte, E., Mooney, R., Ramani, A., Wong, Y. (2005). Comparative Experiments on Learning Information Extractors for Proteins and their Interactions. 2. Artificial Intelligence in Medicine (Special Issue on Summarization and Information Extraction from Medical Documents); 33: 139-155.
  • Ramani, A., Bunescu, R., Mooney, R., Marcotte, E. (2005). Consolidating the Set of Known Human Protein-Protein Interactions in Preparation for Large-Scale Mapping of the Human Interactome. 5, r40. Genome Biology; 6.
  • Mooney, R., Bunescu, R. (2005). Mining Knowledge from Text Using Information Extraction. 1. SIGKDD Explorations (Special Issue on Text Mining and Natural Language Processing); 7: 3-10.

Book, Chapter in Scholarly Book (3)

  • Dandala, B., Mihalcea, R., Bunescu, R. (2013). Word Sense Disambiguation using Wikipedia. The People’s Web Meets NLP: Collaboratively Constructed Language Resources; 23. http://www.springer.com/education+%26+language/linguistics/book/978-3-642-35084-9.
  • Bunescu, R., Mooney, R. (2007). “Extracting Relations from Text: From Word Sequences to Dependency Paths” in Text Mining and Natural Language Processing. Springer; 29–44.
  • Bunescu, R., Mooney, R. (2007). “Statistical Relational Learning for Natural Language Information Extraction” in Statistical Relational Learning. Cambridge, MA: MIT Press; 535-552.

Conference, Poster (1)

  • Chen, L., Bunescu, R., Xu, L., Liu, C. (2016). Mandarin tone recognition based on unsupervised feature learning from spectrograms . The 5th Joint Meeting of the Acoustical Society of America and the Acoustical Society of Japan.

Patents

  • Bunescu, R., Pasca, M. Disambiguation of named entities. 9,135,238.
  • Bunescu, R., Yi, J., Nasukawa, T. Method and system for extracting opinions from text documents. 8,200,477.