Skip to: Main Content Search Navigation Secondary Navigation

Tingyue Gu

Professor, Chemical and Biomolecular Engineering
Chemical and Biomolecular Engineering, Biomedical Engineering, Institute for Corrosion and Multiphase Technology
Stocker Center 167B
gu@ohio.edu
Phone: 740.593.1499

http://www.ohio.edu/people/gu

Before joining the Ohio University faculty in 1992, Dr. Gu worked in the Biotechnology Group in the Corporate Research Department of Miller Brewing Company. He was involved in development of a pilot-scale process for production of a rare and naturally occurring recombinant protein.

Dr. Gu is internationally known for his work on chromatography modeling and scale-up. He is the author of a chromatography simulation package called "Chromulator" that has been used by many dozens of university researchers in over thirty countries, and several major pharmaceutical and biotech companies.

Dr. Gu has carried out research in protein purification, fungal and bacterial fermentation. In recently years, he started research in microbiologically influenced corrosion (MIC) in the oil and gas industry. He is specifically interested in MIC mechanism, biofilm ecology, MIC in underdeposit pitting attacks involving sand, biocide dosing and degradation modeling, reservoir souring modeling, and modeling and prediction of MIC in pipelines. He is a consultant for the oil and gas industry for MIC problems. He is an Executive Editor of Journal of Microbial & Biochemical Technology. He is an editorial board member of Bioprocess & Biosystems Engineering and journal of Chemistry. His latest inventions include a new type of online biofilm sensor, a drop-in disposable MIC-e-cell biofilm/MIC sensor and a new green biocide cocktail containing naturally occurring chemicals against tough biofilms. The cocktail is environmentally friendly for applications in oil and gas pipelines and in hydraulic fracturing ("fracking") fluids.

Research Details: Dr. Gu is interested in the following research areas: Microbiologically influenced corrosion, microbial fuel cells, biofilm treatment, cellulosic biomass utilization, fermentation, and bioseparations (including chromatography scale-up and media development).
Research Topics
Chemical and Biomolecular Engineering
Microbiologically Influenced Corrosion
Biofilm mitigation
Microbial fuel cells
Bioelectrochemistry
Fermentation and bioseparations

Dr. Gu is also interested in cellulosic biomass utilization and microbial fuel cells for waste treatment. He models bio-electrochemical processes in biofilms and mass transfer in porous media with and without reactions. He develops software on the Windows platform for academic and industrial applications.


Research Interests: Microbiologically Influenced Corrosion, Biofilm Mitigation, Microbial Fuel Cells, Bioelectrochemistry,

All Degrees Earned: Ph.D., Chemical Engineering, Purdue University, August 1990 BS, Chemical Engineering, Zhejiang University, May 1985

Conference Proceeding (15)

  • Jia, R., Yang, D., Li, Y., Al-Mahamedh, H., Gu, T. (2016). Enhancement of alkyldimethylbenzylammonium chloride and tributyl tetradecyl phosphonium chloride biocides using D-amino acids against a field biofilm consortium. CORROSION/2016; Paper No. C2016-7279.
  • Li, Y., Gu, T., Xu, C., Zhang, P., Xu, D. (2015). D-amino acids enhanced biocide mitigation of field biofilm consortia in lab tests. CORROSION/2015; Paper No. C2015-5522.
  • Fu, W., Li, Y., Xu, D., Gu, T. (2014). Comparison of two different types of anaerobic copper biocorrosion mechanisms by a sulfate reducing bacterium and a nitrate reducing bacterium. CORROSION/2014; Paper No. C2014-3878.
  • Li, Y., Xu, D., Zhang, P., Fu, W., Gu, T. (2014). D-amino acids enhanced biocide mitigation of problematic biofilms. CORROSION/2014; Paper No. C2014-3877.
  • Gu, T., Xu, D. (2013). Why are some microbes corrosive and some not? . CORROSION/2013; Paper No. C2013-0002336.
  • Huang, W., Ruschau, G., Hornemann, J., Xu, D., Wen, J., Gu, T. (2012). Laboratory Investigation of MIC Due to Hydrotest Using Seawater and Subsequent Exposure to Pipeline Fluids With and Without SRB Spiking. CORROSION/2012; Paper No. C2012-0001226.
  • Gu, T. (2012). Can Acid Producing Bacteria Be Responsible for Very Fast MIC Pitting? . Corrosion/2012; Paper No. C2012-0001214.
  • Xu, D., Gu, T. (2011). Bioenergetics Explains When and Why More Severe MIC Pitting by SRB Can Occur. CORROSION/2011; Paper No. 11426.
  • Gu, T., Xu, D. (2010). Demystifying MIC Mechanisms. CORROSION/2010; Paper No. 10213.
  • Zhao, k., Gu, T., Cruz, I., Kopliku, A. (2010). Laboratory Investigation Of MIC In Hydrotesting Using Seawater. CORROSION/2010; Paper No. 10406.
  • Gu, T., Zhao, K., Nesic, S. (2009). A Practical Mechanistic Model for MIC Based on a Biocatalytic Cathodic Sulfate Reduction (BCSR) Theory. CORROSION/2009; Paper No. 09390.
  • Zhao, K., Wen, J., Gu, T., Kopliku, A., Cruz, I. (2008). Mechanistic Modeling of Anaerobic THPS Degradation In Seawater Under Various Conditions. CORROSION/2008; Paper No. 08512.
  • Wen, J., Gu, T., Nesic, S. (2007). Investigation of The Effects of Fluid Flow On SRB Biofilm. CORROSION/2007; Paper No. 07516.
  • Wen, J., Zhao, K., Nesic, S., Gu, T. (2006). Effects of Mass Transfer and Flow Conditions on SRB Corrosion of Mild Steel. CORROSION/2006; Paper No. 06666.
  • Jhobalia, C., Hu, A., Gu, T., Nesic, S. (2005). Biochemical Engineering Approach to Microbiologically Influenced Corrosion. CORROSION/2005; Paper No. 05500.

Journal Article, Academic Journal (81)

  • Sun, D., Xu, D., Yang, C., Shahzad, M., Sun, Z., Xia, J., Zhao, J., Gu, T., Yang, K., Wang, G. (2016). An investigation of the antibacterial ability and cytotoxicity of a novel cu-bearing 317L stainless steel. Scientific Reports (in press); 6: 29244.
  • Lou, Y., Lin, L., Xu, D., Yang, C., Liu, J., Zhao, Y., Gu, T., Yang, K. (2016). Antibacterial Ability of a Novel Cu-bearing 2205 Duplex Stainless Steel against Pseudomonas aeruginosa Biofilm in Artificial Seawater. International Biodeterioration & Biodegradation; 110: 199–205. http://www.sciencedirect.com/science/article/pii/S0964830516300956.
  • Rastegar, S., Mousavi, S., Shojaosadati, S., Gu, T. (2016). Bioleaching of fuel-oil ash using Acidithiobacillus thiooxidans in shake flasks and a slurry bubble column bioreactor. RSC Advances; 6: 21756-21764. http://pubs.rsc.org/en/content/articlelanding/2016/ra/c5ra24861b/unauth#!divAbstract.
  • Liu, H., Gu, T., Zhang, G., Cheng, Y., Liu, H. (2016). Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors. Corrosion Science; 105: 149-160. http://www.sciencedirect.com/science/article/pii/S0010938X16300129.
  • Li, Y., Jia, R., Al-Mahamedh, H., Xu, D., Gu, T. (2016). Enhanced biocide mitigation of field biofilm consortia by a mixture of D-amino acids. Frontiers in Microbiology; 7: 896. http://journal.frontiersin.org/article/10.3389/fmicb.2016.00896/full.
  • Li, H., Zhou, E., Zhang, D., Xu, D., Yang, C., Feng, H., Jiang, Z., Li, X., Gu, T., Yang, K., , . (2016). Investigation of microbiologically influenced corrosion of the nickel-free high nitrogen stainless steel by Pseudomonas aeruginosa. Corrosion Science.
  • Xu, D., Li, Y., Gu, T. (2016). Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry; 110: 52–58. http://www.sciencedirect.com/science/article/pii/S1567539416300366.
  • Li, H., Zhou, E., Zhang, D., Xu, D., Xia, J., Yang, C., Feng, H., Jiang, Z., Li, X., Gu, T., Yang, K. (2016). Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm. Scientific Reports; 6: 20190. http://www.nature.com/articles/srep20190.pdf.
  • Liu, H., Fu, C., Gu, T., Zhang, G., Lv, Y., Wang, H., Liu, H. (2015). Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water. Corrosion Science; 100: 484-495. http://www.sciencedirect.com/science/article/pii/S0010938X1530055X.
  • Zhang, P., Xu, D., Li, Y., Yang, K., Gu, T. (2015). Electron Mediators Accelerate the Microbiologically Influenced Corrosion of 304 Stainless Steel. Bioelectrochemistry; 101: 14–21 . http://www.sciencedirect.com/science/article/pii/S1567539414000929.
  • Li, H., Xu, D., Li, Y., Feng, H., Liu, Z., Li, X., Gu, T., Yang, K. (2015). Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-reducing Bacterium Desulfovibrio vulgaris . PLoS ONE; 10(8): e0136183 : http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136183.
  • Li, Y., Zhang, P., Cai, W., Rosenblatt, J., Raad, I., Xu, D., Gu, T. (2015). Glyceryl trinitrate and caprylic acid for the mitigation of the Desulfovibrio vulgaris biofilm on C1018 carbon steel. World Journal of Microbiology and Biotechnology; http://link.springer.com/article/10.1007/s11274-015-1968-1.
  • Xia, J., Yang, C., Xu, D., Sun, D., Nan, L., Sun, Z., Li, Q., Gu, T., Yang, K. (2015). Laboratory Investigation of Microbiologically Influenced Corrosion (MIC) Resistance of a Novel Cu-bearing 2205 Duplex Stainless Steel in the Presence of an Aerobic Marine Pseudomonas aeruginosa Biofilm. Biofouling; 31: 481-492. http://www.tandfonline.com/eprint/E5TEnJAdte6KMSZUU9sJ/full#.VgKkd02FPCM.
  • Yang, H., Zhou, M., Liu, M., Yang, W., Gu, T. (2015). Microbial Fuel Cells for Biosensor Applications. Biotechnology Letters; 37: 2357-2364. http://link.springer.com/article/10.1007/s10529-015-1929-7.
  • Nan, L., Xu, D., Gu, T., Song, X., Yang, K. (2015). Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli. Materials Science & Engineering C: Materials for biological applications; 48: 228-234. http://www.sciencedirect.com/science/article/pii/S0928493114008029.
  • Xu, D., Gu, T. (2015). The War against Problematic Biofilms in the Oil and Gas Industry. Journal of Microbial & Biochemical Technology; 7: e124.
  • Mehay, A., Gu, T. (2014). A General Rate Model of Ion-Exchange Chromatography for Investigating Ion-Exchange Behavior and Scale-up. Journal of Microbial & Biochemical Technology; 6: 216-222 . http://cheserver.ent.ohiou.edu/Paper-gu/2014-a-general-rate-model-of-ionexchange-chromatography-for-investigating-ionexchange-behavior-and-scaleup.pdf.
  • Xu, D., Gu, T. (2014). Carbon Source Starvation Triggered More Aggressive Corrosion Against Carbon Steel by the Desulfovibrio vulgaris Biofilm. International Biodeterioration & Biodegradation; 91: 74–81 . http://www.sciencedirect.com/science/article/pii/S0964830514000730.
  • Fu, W., Li, Y., Xu, D., Gu, T. (2014). Comparing two different types of anaerobic copper biocorrosion by sulfate- and nitrate-reducing bacteria. Materials Performance, June; 66-70.
  • Xu, D., Li, Y., Gu, T. (2014). D-methionine as a biofilm dispersal signaling molecule enhanced tetrakis hydroxymethyl phosphonium sulfate mitigation of Desulfovibrio vulgaris biofilm and biocorrosion pitting. New York: Materials and Corrosion, Wiley; 65: 837–845 . http://onlinelibrary.wiley.com/doi/10.1002/maco.201206894/full.
  • Zheng , B., Li, K., Liu, H., Gu, T. (2014). Effects of Magnetic Fields on Microbiologically Influenced Corrosion. Industrial & Engineering Chemistry Research; 53: 48–54. http://pubs.acs.org/doi/abs/10.1021/ie402235j.
  • Gu, T. (2014). Theoretical Modeling of The Possibility of Acid Producing Bacteria Causing Fast Pitting Biocorrosion . Los Angeles, CA: Journal of Microbial & Biochemical Technology; 6: 68-74 . http://cheserver.ent.ohiou.edu/Paper-gu/2014%20Theoretical%20Modeling%20of%20the%20Possibility%20of%20Acid%20Producing%20Bacteria%20Causing%20Fast%20Pitting%20Biocorrosion.pdf.
  • Luo, J., Ma, G., Zhou, W., Su, Z., Gu, T. (2013). Comparison of Fully-Porous Beads and Cored Beads in Size Exclusion Chromatography for Protein Purification . Chemical Engineering Science; 102: 99-105. http://www.sciencedirect.com/science/article/pii/S000925091300537X.
  • Chi, M., He, H., Wang, H., Zhou, M., Gu, T. (2013). Graphite Felt Anode Modified by Electropolymerization of Nano-Polypyrrole to Improve Microbial Fuel Cell (MFC) Production of Bioelectricity. Journal of Microbial & Biochemical Technology; S12-004: 1-4.
  • Xu, D., Huang, W., Ruschau, G., Hornemann, J., Wen, J., Gu, T. (2013). Laboratory Investigation of MIC Threat Due to Hydrotest Using Untreated Seawater and Subsequent Exposure to Pipeline Fluids with and without SRB Spiking. Elsevier: Engineering Failure Analysis; 28: 149-159.
  • Zhao, K., Gu, T., Cruz, I., Kopliku, A. (2013). Laboratory Investigation of Microbiologically Influenced Corrosion In Pipeline Hydrotest Using Seawater. Materials Performance; 52: 64-69.
  • Xu, D., Li, Y., Song, F., Gu, T. (2013). Laboratory Investigation of Microbiologically Influenced Corrosion of C1018 Carbon Steel by Nitrate Reducing Bacterium Bacillus licheniformis. Corrosion Science; 77: 385–390.
  • Zhou, M., Yang, J., Wang, H., Jin, T., Xu, D., Gu, T. (2013). Microbial Fuel Cells (MFCs) and Microbial Electrolysis Cells (MECs) for the Production of Bioelectricity and Biomaterials. M. Zhou, J Yang, H. Wang, T. Jin, D. Xu, : Environmental Technology; 34: 1915-1928.
  • Gu, T., Iyer, G., Cheng, . (2013). Parameter Estimation And Rate Model Simulation Of Partial Breakthrough Of Bovine Serum Albumin On A Column Packed With Large Q Sepharose Anion-Exchange Particles. . Separation and Purification Technology; 116: 319-326.
  • Gu, T., Held, M., Faik, A. (2013). Supercritical CO2 and Ionic Liquids for the Pretreatment of Lignocellulosic Biomass in Bioethanol Production. Environmental Technology; 34: 1735-1749.
  • Zhou, M., Gu, T. (2013). The Next Breakthrough in Microbial Fuel Cells and Microbial Electrolysis Cells for Bioenergy and Bioproducts. Journal of Microbial & Biochemical Technology; S12-003: 1-4.
  • Wen, J., Xu, D., Gu, T., Raad, I. (2012). A green triple biocide cocktail consisting of a biocide, EDDS and methanol for the mitigation of planktonic and sessile SRB. World Journal of Microbiology and Biotechnology; 28: 431-435.
  • Xu, D., Li, Y., Gu, T. (2012). A synergistic D-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm. World Journal of Microbiology and Biotechnology; 28: 3067-3074.
  • Xu, D., Wen, J., Gu, T., Raad, I. (2012). Biocide Cocktail Consisting of Glutaraldehyde, Ethylene Diamine Disuccinate (EDDS), and Methanol for the Mitigation of Souring and Biocorrosion. Corrosion; 68: 994-1002.
  • Xu, D., Wen, J., Fu, W., Gu, T., Raad, I. (2012). D-amino acids for the enhancement of a binary biocide cocktail consisting of THPS and EDDS against an SRB biofilm. World Journal of Microbiology and Biotechnology; 28: 1641-1646.
  • Wang, J., Gu, T., Zhong, J. (2012). Enhanced Recovery of Antitumor Ganoderic Acid T from Ganoderma lucidum Mycelia by Novel Chemical Conversion Strategy . Biotechnology and Bioengineering; 109: 754–762.
  • Gu, T. (2012). New Understandings of Biocorrosion Mechanisms and their Classifications. Journal of Microbial & Biochemical Technology; 4: 3-6.
  • Zhou, M., Wang, H., Hassett, D., Gu, T. (2012). Recent Advances in Microbial Fuel Cells (MFCs) and Microbial Electrolysis Cells (MECs) For Wastewater Treatment, Bioenergy and Bioproducts. Journal of Chemical Technology & Biotechnology, Wiley; 88: 508-518.
  • Gu, T., Liu, M., Cheng, K., Ramaswamy, S., Wang, C. (2011). A General Rate Model Approach for the Optimization of the Core Radius Fraction for Multicomponent Elution in Preparative Nonlinear Liquid Chromatography Using Cored Beads. Chemical Engineering Science; 66: 3531–3539.
  • Narayanaswamy, N., Faik, A., Goetz, D., Gu, T. (2011). Supercritical Carbon Dioxide Pretreatment of Corn Stover and Switchgrass for Lignocellulosic Ethanol Production. Bioresource Technology ; 102: 6995-7000.
  • Gu, T. (2010). Chelators enhanced biocide inhibition of planktonic sulfate-reducing bacterial growth. World Journal of Microbiology and Biotechnology; 26: 1053-1057.
  • Gu, T. (2010). Enhanced Biosynthetic Gene Expressions and Production of Ganoderic Acids in Static Liquid Culture of Ganoderma lucidum under Phenobarbital Induction. Applied Microbiology and Biotechnology; 86: 1367–1374.
  • Wang, L., Ridgway, D., Gu, T., Moo-Young, M. (2009). Kinetic Modeling of Cell Growth and Product Formation in Submerged Culture of Recombinant Aspergillus niger. Chemical Engineering Communications; 196: 481-490.
  • Zhao, K., Wen, J., Gu, T., Kopliku, A., Cruz, I. (2009). Mechanistic Modeling of Anaerobic THPS Degradation Under Alkaline Condition in the Presence of Mild Steel. July. Materials Performance; 62-66.
  • Du, Z., Li, H., Gu, T. (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances; 25: 464-482.
  • Gu, T., Zhang, L. (2007). Partition Coefficients of Some Antibiotics, Peptides and Amino Acids in Liquid-Liquid Partitioning of the Acetonitrile-Water System At Subzero Temperatures. Chemical Engineering Communications; 194: 828-834.
  • Zhou, W., Gu, T., Su, Z., Ma, G. (2007). Synthesis of macroporous poly(glycidyl methacrylate) microspheres by surfactant reverse micelles swelling method. European Polymer Journa; 43: 4493-4502.
  • Zhou, W., Gu, T., Su, Z., Ma, G. (2007). Synthesis of macroporous poly(styrene-divinyl benzene) microspheres by surfactant reverse micelles swelling method. Polymer; 48: 1981-1988.
  • Tan, W., Gu, T., Zhong, J. (2006). Separation of Targeted Ganoderic Acids from Ganoderma lucidum by Reversed Phase Liquid Chromatography with Ultraviolet and Mass Spectrometry Detections. Biochemical Engineering Journal; 32: 205-210.
  • Gu, T., Tsai, G., Tsao, G. (2006). Synthesis of Rigid Cyclodextrin-Containing Polymeric Resins for Adsorption. Journal of Inclusion Phenomena and Macrocyclic Chemistry; 56: 375-379.
  • Wang, L., Ridgway, D., Gu, T., Moo-Young, M. (2005). Bioprocess Strategies to Improve Heterologous Protein Production in Filamentous Fungi. Biotechnology Advances; 23: 115-129.
  • Huang, H., Gu, T., Moo-Young, M. (2005). Data Acquisition and Control of A 22-L B. Braun Fermenter Using LabVIEW. Chemical Engineering Communications; 192: 137-144.
  • Xu, J., Shpak, E., Gu, T., Moo-Young, M., Kieliszewski, M. (2005). Production of Recombinant Plant Gum With Tobacco Cell Culture in Bioreactor and Gum Characterization. Biotech. & Bioeng; 90: 578-588.
  • Gu, T., Zhou, W., Ma, G., Su, Z. (2005). Rigid gigaporous chromatographic media and their potential impact on downstream processing. Particuology; 3: 349-353.
  • Huang, H., Ridgway, D., Gu, T., Moo-Young, M. (2004). Enhanced Amylase Production By Bacillus subtilis Using A Dual Exponential Feeding Strategy. Bioprocess and Biosystems Engineering; 27: 63-69.
  • Gu, T., Syu, M. (2004). Modeling of Immobilized Cell Columns for Bioconversion and Wastewater Treatment. Biotechnology Progress; 30: 1460-1466.
  • Huang, H., Ridgway, D., Gu, T., Moo-Young, M. (2003). A Segregated Model for Product Formation By Bacillus subtilis. Enzyme and Microbial Technology; 32: 407–413.
  • Wang, L., Ridgway, D., Gu, T., Moo-Young, M. (2003). Effects of Process Parameters on Heterologous Protein Production in Aspergillus niger Fermentation. Journal of Chemical Technology and Biotechnology; 78: 1259-1266.
  • Gu, T., Hsu, K., Syu, M. (2003). Scale-Up of Affinity Chromatography for Purification of Enzymes and Other Proteins. Enzyme and Microbial Technology; 33: 433-437.
  • Li, Z., Gu, T., Kelder, B., Kopchick, J. (2001). Analysis of Fatty Acids in Mouse Cells Using Reversed-Phase High-Performance Liquid Chromatography. Chromatographia; 54: 463-467.
  • O’Donnell, D., Xu, J., Wang, L., Ridgway, D., Gu, T., Moo-Young, M. (2001). Enhanced Heterologous Protein Production in Aspergillus niger through pH Control Of Extracellular Protease Activity. Biochemical Engineering Journal; 8: 187-193.
  • Bai, F., Wang, L., Huang, H., Xu, J., Caesar, J., Ridgway, D., Gu, T., Moo-Young, M. (2001). Oxygen mass-transfer performance of low viscosity gas-liquid-solid system in a split-cylinder airlift bioreactor. Biotechnology Letters; 23: 1109-1113.
  • Xu, J., Wang, L., Ridgway, D., Gu, T., Moo-Young, M. (2000). Increased Heterologous Protein Production in Aspergillus niger Fermentation Through Extracellular Protease Inhibition by Pelleted Growth. Biotechnology Progress; 16: 222-227.
  • Gu, T., Zheng, Y. (1999). A Study of Scale-Up of Reversed-Phase Liquid Chromatography. Separation and Purification Technology; 15: 41-58.
  • Liu, F., Li, W., Ridgway, D., Gu, T., Moo-Young, M. (1998). Inhibition of extracellular protease secretion by Aspergillus niger using cell immobilization. Biotechnology Letters; 20: 539-542.
  • Li, Z., Gu, Y., Gu, T. (1998). Mathematical Modeling and Scale-Up of Size Exclusion Chromatography. Biochemical Engineering J., ; 2: 145-155.
  • Zheng, Y., Gu, T. (1998). Modified van der Waals Equation for the Prediction of Multicomponent Gas Adsorption Isotherms. J. Colloid and Interface Science; 206 : 457-463.
  • Liu, F., Li, W., Ridgway, D., Gu, T., Shen, Z. (1998). Production of Poly-beta-hydroxybutyrate on Molasses by Recombinant Escherichia coli. Biotechnology Letters; 20: 345-348.
  • Gu, T., Zheng, Y. (1996). Analytical Solution to a Model for the Startup Period for Fixed-Bed Reactors. Chemical Engineering Science; 51: 3773-3779.
  • Pence, D., Gu, T. (1996). Liquid-Liquid Equilibrium of the Acetonitrile-Water System for Protein Purification. Sep. Technol.; 6: 261-264.
  • Xu, B., Chen, W., Gu, T., Ridgway, D., , P., Okada, S., Kopchick, J. (1995). Effects of growth hormone antagonists on 3T3-F442A preadipocyte differentiation. J. Endocrinology; 146: 131-139.
  • Gu, T., Zheng, Y., Gu, Y., Haldankar, R., Bhalerao, N., Ridgway, D., Wiehl, P., Chen, W., Kopchick, J. (1995). Purification of A Pyrogen-Free Human Growth Hormone Antagonist. Biotech. & Bioeng.; 48: 520-528.
  • Gu, T., Gu, Y., Zheng, Y., Wiehl, P., Kopchick, J. (1994). Phase separation of acetonitrile-water mixture in protein purification. Sep. Technol.; 4: 258-261.
  • Gu, T., Truei, Y., Tsai, G., Tsao, G. (1992). Modeling of Gradient Elution in Multicomponent Nonlinear Chromatography. Chemical Engineering Science; 47: 253-262.
  • Gu, T., Tsai, G., Tsao, G. (1992). Multicomponent Affinity Radial Flow Chromatography. Sep. Technol.; 2: 176-182.
  • Gu, T., Tsai, G., Tsao, G. (1991). A Theoretical Study of Multicomponent Radial Flow Chromatography. Chemical Engineering Science; 46: 1279-1288.
  • Gu, T., Tsai, G., Tsao, G. (1991). Simulation of Multicomponent Elution with Mobile Phase Containing Competing Modifiers. Sep. Technol.; 1: 184-194.
  • Gu, T., Tsai, G., Tsao, G. (1991). Some Considerations for Optimization of Desorption Chromatography. Biotech. & Bioeng.; 37: 65-70.
  • Gu, T., Tsai, G., Tsao, G. (1991). Study of Multicomponent Adsorption and Chromatography with Uneven Saturation Capacities. AIChE J.; 37: 1333-1340.
  • Gu, T., Tsai, G., Tsao, G., Ladisch, M. (1990). Displacement Effect in Multicomponent Chromatography. AIChE J.; 36: 1156-1162.
  • Gu, T., Tsai, G., Tsao, . (1990). New Approach to a General Nonlinear Multicomponent Chromatography Model. AIChE J.; 36: 784-788.

Book, Chapter in Scholarly Book (14)

  • Gu, T., Xu, D., Zhang, P., Li, Y., Lindenberger, A. (2015). Microbiologically Influenced Corrosion and Its Impact on Metals and Other Materia. Boca Raton, Florida: CRC Press; 383-408. http://www.crcpress.com/Microbiology-for-Minerals-Metals-Materials-and-the-Environment/Abhilash-Pandey-Natarajan/9781482257298.
  • Zhou, M., Yang, J., Wang, H., Jin, T., Hassett, D., Gu, T. (2013). Bio-electrochemistry of microbial fuel cells and their potential applications in bioenergy. Elsevier.
  • Luo, J., Cai, M., Gu, T. (2013). Pretreatment of Lignocellulosic Biomass Using Green Ionic Liquids . Berlin-New York: Springer.
  • Gu, T. (2013). Pretreatment of Lignocellulosic Biomass Using Supercritical Carbon Dioxide As A Green Solvent. Berlin-New York: Springer.
  • Tong, M., Du, Z., Gu, T. (2012). Converting low-grade biomass to produce energy using bio-fuel cells,Chapter 4 in Eco- and Renewable Energy Materials . Hauppauge, NY: Nova Publishers; 73-97.
  • Zhou, M., Jin, T., Wu, Z., Chi, M., Gu, T. (2012). Microbial Fuel Cells for Bioenergy and Bioproducts, Chapter 8 in Bioenergy and Bioproducts edited by K. Gopalakrishnan, J. van Leeuwen, R. Brown. New York: Bioenergy and Bioproducts, Springer-Verlag; 131-172.
  • Guo, K., Hassett, D., Gu, T. (2012). Microbial Fuel Cells: Electricity Generation from Organic Wastes by Microbes, Chapter 9 in Microbial Biotechnology: Energy and Environment . Oxon: CAB International; 162-189.
  • Huang, L., Cheng, S., Hassett, D., Gu, T. (2012). Wastewater treatment with concomitant bioenergy production using microbial fuel cells, Chapter 14 in: Water Treatment And Pollution Prevention: Advances In Research edited by S. K. Sharma and R. Sanghi. Berlin-New York: Springer Verlag; 405-452.
  • Gu, T. (2008). Selection of Biochemical Separation Processes. 8. McGraw-Hill, New York: Perry’s Handbook of Engineering; 20-71 to 20-85.
  • Gu, T. (2000). Liquid-Liquid Partitioning Methods for Bioseparations . Academic Press, New York; 1: 329-364.
  • Gu, T. (1999). Radial Flow Chromatography. Wiley, New York; 627-639.
  • Gu, T., Tsai, G., Tsao, G. (1993). Modeling of Nonlinear Multicomponent Chromatography. Springer, Berlin-New York ; 49: 45-71.
  • Truei, Y., Gu, T., Tsai, G., Tsao, G. (1992). Large-Scale Gradient Elution Chromatography. Springer, Berlin-New York ; 47: 1-44.
  • Gu, T., Tsai, G., Tsao, G. (1992). Multicomponent Radial Flow Chromatography. Springer, Berlin-New York ; 49: 73-95.

Book, Scholarly-Revised (1)

Book, Chapter in Scholarly Book-Revised (1)

Book, Scholarly (2)

  • Gu, T. (2013). Green Biomass Pretreatment for Biofuels Production (edited book). Berlin-New York: Springer; 162 pages. http://www.springer.com/chemistry/book/978-94-007-6051-6.
  • Gu, T. (1995). Mathematical Modeling and Scale-Up of Liquid Chromatography (123 pages). Berlin-New York: Springer.

Patents

  • Gu, T., , D. Compositions and methods for treating biofilms. US 9,034,812 B2 (May 19, 2015).
  • Gu, T. Methods and Compositions for Applications Related to Microbiologically Influenced Corrosion. UK Patent GB2492687 (August 13, 2014).
  • Gu, T. Methods and compositions for detection of biofilms (WO 2013032961 A1).