Hull & associates, inc.

Consortium for Energy, Economics, & the Environment at Ohio University

Steve E. Giles, Vice President - Alternative Energy

March 4, 2014
OUR MARKET AREAS

- Shale Oil & Gas
- Brownfields
- Alternative Energy
- Environmental
- Waste Management

PROJECT DEVELOPMENT AND CONSULTING
Landfill Gas-to Energy

All energy projects begin with the fuels source.

- Why do landfills install gas collection systems?
 - Clean Air Act Regulations - New Source Performance Standards
 - Capacity: design capacity greater than or equal to 2.5 Mg and 2.5 million cubic meters.
 - Emissions: annual NMOC emission rate greater than or equal to 50 Mg.
 - EPA orders to control gas migration, or odors etc…
- Passive versus Active Systems
- Efficient collection systems are critical to successful LFG projects.
- It can be difficult to economically justify a LFG energy project on landfills that do not have a collection system.
Measuring Landfill Gas

- Not all landfills are the same. The quantity and quality of waste placed in the landfill will impact gas production.
- The landfill design and cap can also impact gas production.
- Weather, moisture and barometric pressure will impact gas production.
- Gas production will decline 3-4% per year after it reaches its peak production, which is normally 5-7 years after the waste has been placed.
- To determine the gas quality and quantity, we perform actual testing and also utilize a LandGEM model to create a gas supply curve.
Hardy Road Landfill Gas-to-Energy Project

- The Hardy Rd Landfill is located in Akron.
- It was closed in 2002 and utilizes 103 acres.
- During its operation, it took in about 2,100 tons of MSW per day.
- A collection system was installed in 2006 primarily to deal with gas migration issues.
- The gas collection system consists of 42 wells and two miles of collection pipes.
- The cap is 5 1/2 feet thick and consists of clay/dirt and a synthetic liner.
The landfill produces between 300 scfm and 540 scfm of landfill gas.
The methane content of the ranges from 46% to 52%.
The gas is reasonably low in H2S and siloxanes.
Hull installed a gas conditioning skid to remove moisture.
Hull installed a 4,000 foot pipeline to transport the gas to Akron's Water Pollution Control Facility.
Hardy Rd LFG Project Site
Overview
1,100 KW GenSet Installed
Project Summary

- Project cost was approximately $2.7 million
- System capacity is 1,100 kilowatts
- Produces 8,400,000 kWh per year – enough to provide approximately 40% of the electric energy needs of the water pollution control facility of power to about 700 homes.
- Hull raised all of the capital for the project so the City of Akron had no out-of-pocket expense and purchases the energy produced at a rate 5% below its primary service supply.
Greenhouse Gas Summary

- The LFG collection system would capture and destroy methane through the flaring process.
- By using the LFG as a fuel source incremental GHG benefits occur due to offsetting fossil fuel generation.
- A metric ton of methane is equivalent to 21 tons of CO2 emissions.
Emission Reductions and Environmental and Energy Benefits for Landfill Gas Energy Projects

For electricity generation projects, enter megawatt (MW) capacity: 1.10

For direct-use projects, enter landfill gas utilized by project: \[\text{million standard cubic feet per day (mmscfd)} \]

OR

\[\text{standard cubic feet per minute (scfm)} \]

Direct Equivalent Emissions Reduced

<table>
<thead>
<tr>
<th>MMTCO₂ E/yr</th>
<th>tons CH₄/yr</th>
<th>tons CO₂/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0417</td>
<td>2,191</td>
<td></td>
</tr>
</tbody>
</table>

Equivalent to any one of the following annual benefits:

- Carbon sequestered annually by \(_{ \text{acres}} \) acres of U.S. forests: 34,218
- CO₂ emissions from burning \(_{ \text{railcars}} \) short tons of coal: 179
- CO₂ emissions from \(_{ \text{gallons}} \) gallons of gasoline consumed: 4,680,076

Avoided Equivalent Emissions Reduced

<table>
<thead>
<tr>
<th>MMTCO₂ E/yr</th>
<th>tons CH₄/yr</th>
<th>tons CO₂/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0046</td>
<td>5,037</td>
<td></td>
</tr>
</tbody>
</table>

Equivalent to any one of the following annual benefits:

- Carbon sequestered annually by \(_{ \text{acres}} \) acres of U.S. forests: 37,964
- CO₂ emissions from burning \(_{ \text{railcars}} \) short tons of coal: 199
- CO₂ emissions from \(_{ \text{gallons}} \) gallons of gasoline consumed: 5,192,382

Total Equivalent Emissions Reduced

<table>
<thead>
<tr>
<th>MMTCO₂ E/yr</th>
<th>tons CH₄/yr</th>
<th>tons CO₂/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0463</td>
<td>2,191</td>
<td>5,037</td>
</tr>
</tbody>
</table>

Equivalent to any one of the following annual benefits:

- Carbon sequestered annually by \(_{ \text{acres}} \) acres of U.S. forests: 37,964
- CO₂ emissions from burning \(_{ \text{railcars}} \) short tons of coal: 199
- CO₂ emissions from \(_{ \text{gallons}} \) gallons of gasoline consumed: 5,192,382

Energy Benefits (based on project size entered):

- Powering \(_{ \text{homes}} \) houses: 658
