Hydraulic Fracture Pollution Capture: Oil & Gas Production Air Regulations

Andrew D. Shroads, QEP
Regional Director
P.O. Box 1276 • Westerville, OH 43086
📞 (614) 887-7227 • 📧 ashroads @ scainc.com

While every effort has been made to ensure the accuracy of this information, SC&A is not responsible for any errors or omissions. This information is not a substitute for professional environmental consulting services. If legal services are required, consult with legal counsel.
Sources of Air Pollution at Well Sites

Air pollution includes fumes, dust, escaping gas, and equipment exhaust from drilling, fracturing, and treating oil and natural gas.
Air Pollution Regulations at Well Sites

- 40 CFR 98 W
 Ohio Air Permit

- 40 CFR 63 HH
- 40 CFR 63 DDDDD
- 40 CFR 63 JJJJJJ

- 40 CFR 60 Kb
- 40 CFR 60 OOOO
- 40 CFR 63 HH

- 40 CFR 60 IIII | 40 CFR 60 JJJJ
- 40 CFR 63 ZZZZ
Matching the Source to the Regulation

40 CFR 60, Subpart Kb
- Storage vessels (tanks) >13,333 barrels

40 CFR 60, Subpart IIII / JJJJ and 40 CFR 63, Subpart ZZZZ:
- Reciprocating internal combustion engines

40 CFR 60, Subpart OOOO
- Pneumatic controllers, hydraulic fracturing, storage vessels

40 CFR 63, Subpart HH
- Glycol dehydrator, some storage vessels

40 CFR 63, Subpart DDDDD and JJJJJJ
- Boilers

40 CFR 98, Subpart W (Greenhouse Gases Only)
- All onshore petroleum and natural gas production operations

Ohio Air Permit
- All installed equipment and flares
Well Drilling – Well Completions

40 CFR 60, Subpart OOOO: Applies to each single natural gas well that is hydraulically fractured after October 15, 2012

- Notify Ohio and U.S. EPA ≥2 days before scheduled well completion, (unless another agency requires more notice)
- Use **GREEN** completion practices through January 1, 2015:
 - Capture and flare flowback emissions
 - Maximize natural gas recovery and minimize air emissions
- On or after January 1, 2015, during flowback:
 - Recovered liquids must be reclaimed or re-injected
 - Recovered gas used on-site, routed to gas line, or re-injected
 - Route saleable gas to the gas line as soon as practicable
 - Flaring last resort
- Submit an annual report to EPA (due by November 14, 2013)
- Maintain required records and well log for 5 years
Well Drilling – Compressors & Generators

40 CFR 63, Subpart ZZZZ: Applicable to all reciprocating internal combustion engines (RICE)

40 CFR 60, Subpart IIII: Applicable to compression ignition (CI) RICE constructed or reconstructed after July 11, 2005

40 CFR 60, Subpart JJJJ: Applicable to all spark ignition (SI) RICE constructed or reconstructed after June 12, 2006

- The RICE regulations are some of the most complicated air regulations ever drafted (multiple releases and revisions)
 - Over 156 different possible compliance combinations
- Buying and installing manufacturer certified RICE is easiest compliance option
- Notifications, reports, and testing based on RICE size and location
Well Drilling – Air Permits

- Air permits required for all sources generating air pollution
- Ohio EPA has a general permit for oil and gas well site production operations (GP12) and unpaved roadways (GP5.1)
- Oil & Gas production general permit includes: (1) glycol dehydration; (2) flares; (3) leaks; (4) RICE; (5) storage vessels
- General permit subject to applicability criteria
 - Area sources for hazardous air pollutants (HAPs), or <10 tpy of any single HAP and <25 tpy for all HAPs
 - Each tank <950 barrels; all tanks <6,000 barrels
 - All natural gas engines total of ≤1,800 horsepower
 - All diesel engines total of ≤250 horsepower
 - Glycol dehy, RICE, and flare certification / testing restrictions
 - Minimum stack height and fence line requirements
Air Permit Considerations

General Permit
- Fast: most are issued within 45 days of application receipt
- Generic: limits and values are based on qualifying criteria: modeled values of tanks, compressors, dehy units
- May not include all onsite equipment
- Currently does not include 40 CFR 60, Subpart OOOO
- Modifications to general permit are pending

Site-specific Permit
- Slower: goal to issue within 180 days of application receipt
- Specific: limits and values are based on actual equipment intended for the site
- Flexible: not limited to general permit qualifying criteria or restrictions
40 CFR 98, Subpart W: Applicable to all wells under common ownership (name on the drilling permit) that emit a total of ≥25,000 metric tons (MT) of greenhouse gases (GHGs) per year

- All natural gas released through leaks or exhaust
- Stationary or portable fuel combustion equipment and flares
- Annual reports due on March 31 for previous calendar year
- Sites generally avoid this requirement by forming unique limited liability corporations for each well site
- Rented equipment included!!!
Case Study – Wells & Greenhouse Gases

National Gas and Oil Development Corporation (NGO) operates almost 600 wells in east-central Ohio, producing almost 3 million cubic feet per day of natural gas.

- Worked closely with NGO staff to expand their tracking spreadsheets to include necessary information for calculating GHGs, (e.g., added lift method, tanks, bleed vents)
- Merged NGO data into a proprietary SC&A spreadsheet to calculate GHG emissions
 - Added natural gas profile (CH₄ and CO₂ content)
 - Profiled gas/ liquid and oil-only wells separately
 - Estimated contractor diesel fuel consumption

Non-fractured well: ~10 MT CO₂e per completion
Fractured well: ~1000 MT CO₂e per completion (Other company)
Case Study – GHG Calculations

The Energy Cooperative | 1500 Granville Road • Newark, OH 43058

ADS - 6/14/2012

GHG Emissions from Natural Gas Production (Wells)

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Emissions Source</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>§98.233(a)</td>
<td>Natural gas pneumatic device venting</td>
<td>0.7</td>
<td>143.8</td>
<td>N/A</td>
<td>3,019.9</td>
</tr>
<tr>
<td>§98.233(c)</td>
<td>Natural gas driven pneumatic pump venting</td>
<td>0.0</td>
<td>0.0</td>
<td>N/A</td>
<td>0.0</td>
</tr>
<tr>
<td>§98.233(f)(1)</td>
<td>Well venting: liquids unloading (Method 1)</td>
<td>0.0</td>
<td>0.0</td>
<td>N/A</td>
<td>0.0</td>
</tr>
<tr>
<td>§98.233(h)</td>
<td>Gas well venting during well completions without hydraulic fracturing</td>
<td>0.0</td>
<td>3.8</td>
<td>N/A</td>
<td>80.7</td>
</tr>
<tr>
<td>§98.233(h)</td>
<td>Gas well venting during well workovers without hydraulic fracturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>§98.233(g)</td>
<td>Gas well venting during well completions with hydraulic fracturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>§98.233(g)</td>
<td>Gas well venting during well workovers with hydraulic fracturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>§98.233(n)</td>
<td>Flare stack emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>§98.233(j)</td>
<td>Storage tanks vented emissions from produced hydrocarbons</td>
<td>121.8</td>
<td>273.7</td>
<td>N/A</td>
<td>5,868.6</td>
</tr>
<tr>
<td>§98.233(p)</td>
<td>Reciprocating compressor rod packing venting</td>
<td>0.4</td>
<td>2.5</td>
<td>N/A</td>
<td>53.9</td>
</tr>
<tr>
<td>§98.233(l)</td>
<td>Well testing venting and flaring</td>
<td>0.0</td>
<td>0.0</td>
<td>N/A</td>
<td>0.0</td>
</tr>
<tr>
<td>§98.233(m)</td>
<td>Associated gas venting and flaring from produced hydrocarbons</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>§98.233(e)</td>
<td>Dehydrator vents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>§98.233(w)</td>
<td>EOR injection pump blowdown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>§98.233(d)</td>
<td>Acid gas removal vents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>§98.233(x)</td>
<td>EOR hydrocarbon liquids dissolved CO₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>§98.233(o)(7)</td>
<td>Centrifugal compressor venting (wet seal degassing vents)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>§98.233(r)</td>
<td>Equipment leaks from valves, connectors, open ended lines, pressure relief valves, pumps, flanges, and other equipment leak sources (Gas)</td>
<td>1.6</td>
<td>356.1</td>
<td>N/A</td>
<td>7,480.1</td>
</tr>
<tr>
<td>§98.233(r)</td>
<td>Equipment leaks from valves, connectors, open ended lines, pressure relief valves, pumps, flanges, and other equipment leak sources (Oil)</td>
<td>0.0</td>
<td>0.9</td>
<td>N/A</td>
<td>20.0</td>
</tr>
<tr>
<td>§98.233(z)</td>
<td>Onshore natural gas production combustion emissions from certain portable equipment</td>
<td>2,347.5</td>
<td>0.1</td>
<td>0.0</td>
<td>2,355.4</td>
</tr>
</tbody>
</table>

Total GHG Emissions:

2,472.0 781.0 0.0 18,878.6

Verified against EPA Subpart W Calculation Tool 9/26/12
In late 1859, blacksmith William Jeffrey drilled the first well in Ohio specifically intended to produce petroleum.

Cygnet, Ohio 1885 ODNR via Toledo Blade