A Spring-Mass System¹

- 1. Type the following commands (at the prompt and then press Enter):
 - (a) syms a
 - (b) y = dsolve('2*D2y+.5*Dy+5*y=sin(a*t)','y(0)=1','Dy(0)=1')
 - (c) y1 = subs(y, a, 1) Substitutes "1" for a.
 - (d) ezplot(y1, [0,50])
 - (e) Explain exactly what happened.
- 2. Repeat (b) and (c) for different values of a, both more and less than 1. By trial and error find a value of a that maximizes the amplitude of the solution. From the equation, what is its 'natural' or 'resonant' frequency? What should happen when a is set to this value? Test your hypothesis.
- 3. Prepare a brief (< 1 page) written report answering all the questions. Use complete sentences and standard mathematical notation. Do **not** get a printout.

The user examines what happens when a system is excited at different frequencies, the relationship between natural frequency and amplitude of the forced, damped ocsillator.

¹Copyright ©2002 Larry Snyder and Todd Young. All rights reserved. Please address comments to young@math.ohiou.edu.