Show all your work to get full/ partial credit. Each problem is worth 5 points unless specified otherwise.

1. Divide, then find the quotient and remainder: $(3x^3 - 11x^2 - 10) \div (x - 4)$

$$\frac{4}{3}$$
 $\frac{3}{10}$ $\frac{-10}{4}$ $\frac{16}{3}$ $\frac{10}{4}$ $\frac{4}{16}$ Remainder = 6

Quotient =
$$3x^2 + x + 4$$

Remainder = 6

$$\frac{3x^3-11x^2-10}{x-4}=3x^2+x+4+\frac{6}{x-4}$$

- 2. Consider the function $f(x) = 5x^2 17x 12$:
- a. Use the Remainder Theorem to determine whether c = 4 is a zero of f(x).
- 41 5 3 10

b. Is (x-4) a factor of f(x)? Explain your reasoning.

3. Solve the inequalities, write your answers using interval notation:

a.
$$3x^2 - 2x + 9 \le 2x(x + 4)$$

 $3x^2 - 3x + 9 - 3x(x + 4) \le 0$
 $x^2 - 10x + 9 \le 0$
 $(x - 9)(x - 1) \le 0$

$$(x-9)(x-1) \le 0$$
 [1,9]
 $(+)$ $(-)$ $(+)$
 0 0 0

b.
$$\frac{x+4}{x-1} < 0$$

4. Write a degree 3 polynomial f(x) with zeros 1, -6, and -3. Leave this polynomial in factored form.

$$f(x) = (x-1)(x+6)(x+3)$$

- 5. For the function $f(x) = \frac{5x-8}{x^2-4}$,
- a. Find the vertical asymptote(s).

$$X^{2}-4 = 0$$

$$X = \pm \sqrt{4}$$

$$X = 2$$

$$X = -2$$

b. Find the horizontal or slant asymptote

c. Find the x-intercept(s) and the y-intercept.

x-intercept (set
$$y=0$$
)
$$\frac{5x-8}{x^2-4}=0$$

$$5x-8=0$$

$$x=8/5$$

$$(8/5,0)$$

y-intercept (set x=0)

$$y = \frac{-8}{-4} = 2$$
(0,2)

- 6. The amount of pain reliever that a physician prescribes for a child varies directly as the weight of the child. A physician prescribes 250 mg of the medicine for a 50-lb child.
- a. Write a variation model using *k* as the constant of variation.

b. Solve for the constant of variation, k

c. How much medicine should be prescribed for an 80-lb child?

7. Use the definition of a one-to-one function to determine if f(x) = -3x + 2 is one-to-one.

$$f(a) = f(b)$$

$$-3a+2 = -3b+2$$

$$a = b$$
Therefore, f is 1-1

8. Show that the functions f(x) = 5x + 4 and $g(x) = \frac{x-4}{5}$ are inverses of each other.

$$(f \circ g)(x) = f(g(x)) = 5(x-4)+4 = x$$

 $(g \circ f)(x) = g(f(g)) = 5x+4-4 = x$
f and g are inverses.

9. The graph of a function y = f(x) is given below. Is the function a one-to-one function? Justify your answer.

The horizontal line hits the graph at more than one Therefore, f is not 1-1

10. Find the inverse function of $f(x) = \frac{x-8}{3}$

$$y = \frac{x-8}{3}$$

$$x = \frac{y-8}{3}$$

11. Graph the function $f(x) = 2^x$

12. Suppose that \$3,000 in principal is invested in an account and pays 4.5% interest per year. Write an equation representing the amount in the account after 6 years, compounded quarterly.

$$\gamma = 4.5 / . = \frac{4.5}{100}$$

$$t = 6$$

$$P(1+\frac{r}{n})^{nt}$$
3000 $(1+\frac{0.045}{4})^{24}$

13. The graph of $f(x) = \frac{x+4}{x-1}$ is given. Complete the following statements. (2.5 points each)

a. As $x \to -\infty$, $f(x) \to \underline{1}$.

b. As
$$x \to 1^+$$
, $f(x) \to \underline{\hspace{1cm}}$

c. As
$$x \to 1^-$$
, $f(x) \to \underline{-\infty}$.

d. As
$$x \to \infty$$
, $f(x) \to 1$.