NAME : \qquad
Show all your work to get full/ partial credit. Each problem is worth 5 point.

1. Determine whether the statement is true or false.
a. $-5 \in \mathbb{Z}(\mathbb{Z}$ is the set of all integers) \square True
b. $\{0,2,4,6\} \subset\{2,4,6\}$ False
2. Graph the set $[-1,1)$ and write the corresponding set-builder notation,

$$
\{x:-1 \leqslant x<1\}
$$

3. Simplify $15-\left\{\left(5+\sqrt{4^{2}+3^{2}}\right)-|2-7|\right\}$.

$$
\begin{aligned}
& 15-\{(5+\sqrt{16+9})-1-51\} \\
& 15-\{(5+\sqrt{25})-5\}=15-\{5+5-5\}=15-5=10
\end{aligned}
$$

4. Clear parentheses and combine like terms: $2 x^{3}-\frac{1}{2}\left(4 x^{3}-2 x^{2}\right)+1$.

$$
\begin{aligned}
& 2 x^{3}-\frac{4 x^{3}}{2}+\frac{2 x^{2}}{2}+1 \\
& 2 x^{3}-2 x^{3}+x^{2}+1
\end{aligned}
$$

$$
x^{2}+1
$$

5. Use the properties of exponents to simplify: $\left(\frac{25}{4 x^{4} y^{5}}\right)\left(\frac{5}{2 x^{3} y^{2}}\right)^{-3}$.

$$
\begin{aligned}
& \frac{25}{4 x^{4} y^{5}}\left(\frac{2 x^{3} y^{2}}{5}\right)^{3}=\frac{25}{4 x^{4} y^{5}}\left(\frac{2^{3} x^{9} y^{6}}{5^{3}}\right)=\frac{25}{4 x^{4} y^{5}} \cdot \frac{8 x^{9} y^{6}}{125} \\
& =\frac{25 \times 8}{4 \times 125} \cdot \frac{x^{9}}{x^{4}} \cdot \frac{y^{6}}{y^{5}}=\frac{2}{5} x^{5} y
\end{aligned}
$$

6. Write the numbers in scientific notation.
a. $223000 \quad 2.23 \times 10^{5}$
b. $0.000526 \quad 5.26 \times 10^{-4}$

Simplify the radical expressions.
7. $\left(\sqrt[3]{\frac{8 x^{3}}{y^{6}}}\right)\left(\sqrt{\frac{y^{4}}{4}}\right)=\sqrt[3]{\frac{2^{3} x^{3}}{y^{6}}} \cdot \sqrt{\frac{y^{4}}{4}}$

$$
=\frac{2 x}{y^{2}} \cdot \frac{y^{2}}{2}=x
$$

8. $(2 \sqrt{x}+5)(3 \sqrt{x}-4)$

$$
\begin{gathered}
6 x-8 \sqrt{x}+15 \sqrt{x}-20 \\
6 x+7 \sqrt{x}-20
\end{gathered}
$$

9. For the polynomial $2 x^{2}+3+15 x^{3}$, write the
a. Degree?
b. Leading coefficient?

$$
15
$$

10. Multiply and simplify $\left(5 x^{2}-2 y\right)\left(x^{2}+y\right)=5 x^{2} \cdot x^{2}+5 x^{2} y-2 y x^{2}-2 y^{2}$

$$
\left\{5 x^{4}+3 x^{2} y-2 y^{2}\right\}
$$

Completely factor \#s 11 and 12:
11. $6 t y+9 y+14 t+21$
$3 y(2 t+3)+7(2 t+3)$
$(2 t+3)(3 y+7)$
12. $25 a^{2}-9 b^{2}$

$$
\begin{aligned}
& 5^{2} a^{2}-3^{2} b^{2} \\
& (5 a-3 b)(5 a+3 b)
\end{aligned}
$$

13. Simplify the rational expression $\frac{18-3 z}{z^{2}-6 z}$
14. What are the restrictions for $\frac{18-3 z}{z^{2}-6 z}$?

$$
\frac{3(6-z)}{z(z-6)}=\frac{-3(z-6)}{z(z-6)}
$$

$z \neq 0$

$$
z \neq 6
$$

15. Rationalize the denominator and simplify: $\frac{7 \sqrt{3}}{\sqrt{x}}+\frac{\sqrt{3 x}}{x}$.

$$
\frac{7 \sqrt{3}}{\sqrt{x}} \cdot \frac{\sqrt{x}}{\sqrt{x}}+\frac{\sqrt{3 x}}{x}=\frac{7 \sqrt{3 x}}{x}+\frac{\sqrt{3 x}}{x}
$$

16. Solve: $\frac{x-2}{3}-\frac{x-1}{2}=\frac{1}{6}$

$$
\begin{aligned}
\frac{x-2}{3} \cdot \frac{2}{2}-\frac{x-1}{2} \cdot \frac{3}{3} & =\frac{1}{6} \\
2 x-4-3 x+3 & =\frac{1}{6} \\
-x-1 & =1 \\
x & =-2\}
\end{aligned}
$$

17. Solve $3 x+a y=b x-2$ for y.

$$
\begin{aligned}
& a y=b x-2-3 x \\
& a y=x(b-3)-2 \\
& y=\frac{x(b-3)-2}{a}
\end{aligned}
$$

Identify \#s 18 and 19 as conditional, contradiction or identity.
18. $5(w-1)=5 w$
$5 \omega-5=5 \omega$

$$
-5=0
$$

contradiction
19. $2(2 x-1)=4 x-2$

$$
\begin{aligned}
4 x-2 & =4 x-2 \\
0 & =0
\end{aligned}
$$

Identity.
20. The perimeter of the inner square is 24 m and the outer square is 40 m . Determine the value \boldsymbol{x} from
the following figure.

MIDI

$$
\begin{aligned}
6+2 x & =10 \\
2 x & =4 \\
x & =2
\end{aligned}
$$

MID II

$$
\begin{aligned}
2(6+2 x)+2(6+2 x) & =40 \\
6+2 x+6+2 x & =20 \\
12+4 x & =20 \\
4 x & =8 \\
x & =2
\end{aligned}
$$

