Show all your work in order to get full credit. Each question is worth 6 points, but questions 9 and 10 are worth 5 points each.

1. It costs a company $\$ 58$ to produce 6 units of a product and $\$ 78$ to produce 10 units. Write the cost function, assuming that the cost function is linear.

y	x
58	6
78	10

slope formula

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{78-58}{10-6}=\frac{20}{4}=5
$$

$$
y=m x+b
$$

$$
y=5 x+b
$$

$$
y=5 x+28
$$

substitute $x_{1}=6, y_{1}=58$ to find b

$$
58=5 \cdot 6+b \quad 58=30+b \Rightarrow b=28
$$

2. Write the equation of a line passing through $(-8,-4)$ and perpendicular to the line

$$
\begin{gathered}
y=\frac{1}{6} x+3 \\
m_{1}=\frac{1}{6}
\end{gathered}
$$

$$
\begin{aligned}
m_{1} m_{2} & =-1 \\
\frac{1}{6} m_{2} & =-1 \\
m_{2} & =-6
\end{aligned}
$$

$$
m_{1} \cdot m_{2}=-1
$$

$$
\text { substitute } x=-8, y=-4 \text { into }
$$

$$
y=-6 x+b \text { to find }
$$

$$
y=m_{2} x+b
$$

$$
-4=-6 \cdot(-8)+b
$$

$$
y=-6 x+b
$$

$$
-4=48+b
$$

$$
-4-48=b \quad b=-52
$$

Use the function $g(x)=3|x+2|-1$ to answer questions 3-5.
3. What is the parent/base function?

$$
y=-6 x-52
$$

$$
y=|x|
$$

4. Describe the sequence of transformations from the parent/base function to $g(x)$.

Step 1 : Shift the graph of $y=1 x \mid$ horizontally to the left by 2 units
Step 2: Vertically stretch the graph resulted from step 1 by a factor of 3 .
5. Graph $g(x)$. Vertically shift the graph resulted from step 2

6. Check if the function is even, odd, or neither. $m(x)=x^{2}+x^{3}$. Show your work.

Check "even"
check "odd"

$$
m(-x)=(-x)^{2}+(-x)^{3}
$$

$$
=x^{2}-x^{3}
$$

$$
\begin{aligned}
-m(-x) & =-\left(x^{2}-x^{3}\right) \\
& =-x^{2}+x^{3}
\end{aligned}
$$

Neither even nor ode

$$
m(-x) \neq m(x)
$$

$$
m(x) \neq-m(-x)
$$

Not even
Not odd.

Use the graph of $y=f(x)$ is given below to answer questions 7-8.

7. Graph $y=-f(x)$

8. Find the intervals on which the graph of $f(x)$ is increasing or decreasing.

$$
\text { increasing: }(-1,2)
$$

$$
\text { decreasing: }(2,4)
$$

Use the following piece-wise function to answer question 9-10.

$$
f(x)=\left\{\begin{array}{ccc}
& & \\
x^{2} & \text { for } & -2 \leq x<1 \\
3 & \text { for } & 1 \leq x \leq 4
\end{array}\right.
$$

9. $\begin{gathered}-2 \leq x<1 \\ =(-2)^{2}=4\end{gathered}$
10. $\frac{1 \leqslant x \leq 4}{f(1)=3}$
11. Find the difference quotient $\frac{f(x+h)-f(x)}{h}$ if $f(x)=x^{2}-3$.

$$
\begin{aligned}
& \qquad f(x+h)=(x+h)^{2}-3=x^{2}+2 x h+h^{2}-3 \\
& \text { then } \begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{x^{2}+2 x h+h^{2}-3-\left(x^{2}-3\right)}{h} \\
& =\frac{x^{2}+2 x h+h^{2}-3-x^{2}+3}{h}=\frac{2 x h+h^{2}}{h}=2 x+h
\end{aligned}
\end{aligned}
$$

Given $f(x)=3 x+4$ and $g(x)=\sqrt{x+1}$, find
12. $(f \circ g)(x)=f(g(x))$
13. the domain of $(f \circ g)(x)$

$$
=3 \sqrt{x+1}+4
$$

$$
\begin{array}{r}
x+1 \geqslant 0 \\
x \geqslant-1
\end{array}
$$

$$
\text { domain : }[-1, \infty)
$$

14. Given $h(x)=\sqrt[3]{x+5}$, find the two functions f and g such that $h(x)=(f \circ g)(x)$.

$$
h(x)=(f \circ g)(x) \quad \begin{aligned}
& f(x)=\sqrt[3]{x} \\
& g(x)=x+5
\end{aligned}
$$

Use the function $f(x)=(x+2)^{2}-1$ to answer questions 15-17:
15. Identify the vertex $(-2,-1)$
16. Find the x and y intercepts.
x-int.
let $y=0: \quad 0=(x+2)^{2}-1$

$$
(x+2)^{2}=1
$$

$$
x+2= \pm 1
$$

17. Graph the function.

y-int.

$$
\begin{gathered}
x+2=1 \text { or } x+2=-1 \\
x=1-2 \quad x=-1-2 \\
x=-1 \text { or } x=-3 \\
\$ \times(-1,0),(-3,0)
\end{gathered}
$$

$$
\text { let } \begin{aligned}
x & =0 \\
y & =(0+2)^{2}-1 \\
& =4-1=3
\end{aligned}
$$

$$
(0,3)
$$

