Name:
Show ALL of your work for full credit. Simplify your answers as much as possible. Each problem (as well as each part) is worth 6 points unless otherwise specified.

1. Find the distance between the points $\mathrm{A}(1,2)$ and
$B(5,-3)$. Using $d=\sqrt{\left(x_{2}-x_{1}\right)+\left(y_{2}-y_{1}\right)^{2}}$
$\alpha=$ distance, form A to B

$$
\begin{aligned}
d & =\sqrt{(5-1)^{2}+(-3-2)^{2}} \\
& =\sqrt{16+25}=\sqrt{41}
\end{aligned}
$$

2. Find the midpoint of the line segment with endpoints $A(1,2)$ and $B(5,-3) .\left(l \operatorname{sing}\left(\frac{x+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\right.$
Midpoint $=\left(\frac{5+1}{2},-\frac{3+2}{2}\right)$

$$
=\left(3,-\frac{1}{4}\right)
$$

3. Solve $x^{2}+10 x-2=0$ by completing the square.

$$
\begin{gathered}
x^{2}+10 x=2 \\
x^{2}+10 x+(5)^{2}=2+(5) \\
(x+5)^{2}=27 \\
x+5= \pm \sqrt{27} \\
x=-5 \pm \sqrt{27}
\end{gathered}
$$

4. Use the Pythagorean Theorem to find the possible values for x. Circle the correct value. Height $^{2}+$ Base $^{2}=$ Hypotenuse 2

$$
\begin{aligned}
& (x-2)^{2}+(x-1)^{2}=x^{2} \\
& \left(x^{2}-4 x+4\right)+\left(x^{2}-5 x+1\right)=x
\end{aligned}
$$

$$
\begin{aligned}
\sqrt{27} & =\sqrt{9} \cdot \sqrt{3} \\
& =3 \sqrt{3}
\end{aligned}
$$

$$
92^{2}-6 x+5=x^{2}
$$

$$
2 x^{2}-6 x+5=x^{2}
$$

$$
x^{2}-6 x+5=0
$$

$$
(x-5)(x-1)=0
$$

$$
\begin{aligned}
& \operatorname{So} \quad x=5 \\
& \text { B. }-4 \leq \frac{3 x+4}{2} \leq 2 \\
& -8 \leq 3 x+4 \leq 4 \\
& -12 \leq 3 \leq x \leq 0 \\
& -4 \leq x \leq 0
\end{aligned}
$$

5. Solve each inequality. Write your answers using interval notation.

$$
\begin{aligned}
& \text { A. }-3(x+4)+2>x+6 \\
& -3 x-12+2>x+6 \\
& -3 x-107 x+6 \\
& -4 \times>16 \\
& x<-4
\end{aligned}
$$

C. $|2 x+3|<-2$
$|2 x+3|$ Cannot be

6. Write the standard form of the circle with center $(2,-1)$ and radius 3 . Clearly sketch the circle.

$$
\begin{gathered}
\text { Using }(x-h)^{2}+(y-k)^{2}=r^{2} \text { Center }\left(h, k j \text { and radius' } \gamma^{\prime}\right. \\
(x-2)^{2}+(y-(-1))^{2}=3^{2} \\
(x-2)^{2}+(y+1)^{2}=9
\end{gathered}
$$

7. Solve each equation.
A. $6 x^{2}=24 x$

$$
\begin{gathered}
x^{2}=4 x \\
x^{2}-4 x=0 \\
x(x-4)=0 \\
x=0 \text { or } x=4
\end{gathered}
$$

C. $\frac{3}{x-2}-\frac{3}{x^{2}+3 x-10}=0$

$$
\begin{aligned}
& \frac{3}{x-2}=\frac{3}{x+2 x-10} \\
& \frac{1}{(x-2)}=\frac{1}{(x+5)(x-2)} \quad x \neq 5 \text { and } \\
& \frac{1}{1}=\frac{1}{(x+5)} \\
& x+5=1 \\
& x=-4
\end{aligned}
$$

B. $\sqrt{3 x-7}-\sqrt{4-x}=0$

$$
\begin{aligned}
\sqrt{3 x-7} & =\sqrt{4-x} \\
(\sqrt{3 x-7})^{2} & =\sqrt{4-x} \\
3 x-7 & =4-x \\
4 x & =11 \\
x & =\frac{11}{4}
\end{aligned}
$$

D. $2|2 x-3|+4=10$
8. Evaluate $f(x)=x^{2}+4$ for the given values of x. Simplify as much as possible.
A. $f(0)$ [4 pts.]
B. $f(-2)$
C. $f\left(\frac{1}{2}\right)$

$$
f(0)=0+4=4
$$

$$
\begin{aligned}
f(-2) & =(-2)^{2}+4 \\
& =4+4 \\
& =8
\end{aligned}
$$

$$
\begin{aligned}
f\left(\frac{1}{2}\right) & =\left(\frac{1}{2}\right)^{2}+4 \\
& =\frac{1}{4}+4 \\
& =4 \frac{1}{4} \\
& =\frac{17}{4}
\end{aligned}
$$

9. Consider the following graph. [6 pts. total]
A. Does this graph represent a function? Explain your reasoning. Yes because this graphsatisfles the vertical live test.
B. State the domain. Write your answer in interval notation.

$$
[-4,3]
$$

C. State the range. Write your answer in interval notation.

$$
[-3,2]
$$

10. Find the x and y intercepts of $2 x+7 y=28$.

$$
\begin{array}{cc}
2 x+7 y=28 & 2 x+7 y=28 \\
x \text {-intercept } t(y=0) & y \text {-intercept }(x=0) \\
2 x=28 & 0+7 y=28 \\
x=14 & y=4 \\
\text { So, } x \text {-intercept is }(14,0) & y \text {-intercept is }(0,4)
\end{array}
$$

