\qquad
Show all your work in order to get full credit. Each question is worth 5 points.
If $\mathrm{f}(\mathrm{x})=x^{4}+6 x^{3}-12 \mathrm{x}^{2}-30 \mathrm{x}+35$, use the remainder theorem to check if

1. $(x+7)$ is a factor of $f(x)$.
2. (-7) a zero of $f(x)$.

$$
\begin{array}{rcccc}
1 & 6 & -12 & -30 & 35 \\
-7 & 7 & 35 & -35 \\
\hline 1 & -1 & -5 & 5 & 0
\end{array}
$$

$R=0$. so it is a factor
For $f(x)=\frac{x+7}{2 x^{2}-x-10}$ find,
3. Vertical asymptote (s)

$$
f(x)=\frac{x+7}{2 x^{2}-x-10}=\frac{x+7}{(x+2)(2 x-5)}
$$

Vertical asym. are $x=-2$ and $x=\frac{5}{2}$
Refer to the graph and complete the following statements.
5. As $\mathrm{x} \rightarrow-\infty, \mathrm{f}(\mathrm{x}) \rightarrow \ldots$? $\ldots .$. . As $\mathrm{x} \rightarrow 4^{+}, \mathrm{f}(\mathrm{x}) \rightarrow \ldots \ldots \ldots$
7. $f(x)$ is increasing over the intervals). \{ \} $\}$
8. The domain is. $\mathbb{R}-\{,\{4\}$
9. The range is.. $\mathbb{R}-\ldots\{2\}$

10. So live $4 x^{2}-12 x+9<0$

$$
\begin{aligned}
& 4 x^{2}-12 x+9<0 \\
& \Leftrightarrow(2 x-3)^{2}<0
\end{aligned}
$$

Since the LHS is always $\geqslant 0$ so it has no solution.
11. Solve $\frac{x+2}{x-3} \leq 0$.

Boundary points are $x=-2, x=3^{6}$ restricted val

Intervals	$(-\infty,-2)$	$(-2,3)$	$(3, \infty)$
Test point	-3	0	4
sign of $x+2$	-	+	+
sign of $x-3$	-	-	+
sign of $\frac{x+2}{x-3}$	+	-	+

Solution se is: $[-2,3)$
16. Find the constant of variation k . Y is inversely proportional to X . When Y is $18, \mathrm{X}$ is 54 .

$$
\begin{aligned}
& y=\frac{k}{x}, y=18, x=54 \\
& 18=\frac{k}{54} \Rightarrow k=18 \times 54=972
\end{aligned}
$$

The amount of simple interest earned in an account varies jointly as the interest rate and time of the investment. An account earns $\$ 200$ in 2 years at 4% interest.
17. Write an equation relating interest, principal, and time.

$$
I=\operatorname{pr} t
$$

18. Find the interest in 3 years at a rate of 5%.
 $I=? t=3$ yrs, $r=0.05 \quad$ Now, $I=2500 \times r \times t=2500 \times 0.05 \times 3$
19. Using the definition of one-to-one function determine if $f(x)=|x+1|$ is a one-to-one function.

Let $f(a)=f(b)$

$$
\Rightarrow|a+1|=|b+1|
$$

$\nRightarrow a=b$
So f is not one to one
20. The cost for a speeding ticket is $\$ 100$ plus $\$ 12$ for each mile per hour over the speed limit. The cost of the ticket $f(x)$ (in $\$$) is given by $f(x)=100+12 x$, where x is the number of miles per hour over the posted speed limit. Find the inverse of $f(x)$.

$$
\begin{aligned}
& f(x)=12 x+100 \\
& y=12 x+100
\end{aligned}
$$

$x \longleftrightarrow y$

$$
x=12 y+100 \Rightarrow y=\frac{x-100}{12} \quad \text { i.e. } f^{-1}(x)=\frac{x-100}{12}
$$

