Show all relevant work and indicate your final answers. Each question (including each part part) is worth 5 points.

1. Solve for x. Indicate all extraneous solutions.

a.
$$3x^{2} = 12x$$

 $x^{2} = 4x$
 $x^{2} - 4x = 0$
 $x(x-4) = 0$
 $x = 0$ or $x = 4$

b.
$$4x^3 - 6x^2 - 20x + 30 = 0$$

 $9x^2(9x - 3) - 10 \cdot (9x - 3) = 6$
 $(9x^2 - 10)(9x - 3) = 0$
 $(9x^2 - 10) = 0$ or $9x - 3 = 0$
 $(9x^2 - 10) = 0$ or $9x - 3 = 0$
 $(9x^2 - 10) = 0$ or $9x - 3 = 0$
 $(9x^2 - 10) = 0$ or $9x - 3 = 0$
 $(9x^2 - 10) = 0$ or $9x - 3 = 0$
 $(9x^2 - 10) = 0$ or $9x - 3 = 0$
 $(9x^2 - 10) = 0$ or $9x - 3 = 0$
 $(9x^2 - 10) = 0$ or $9x - 3 = 0$
 $(9x^2 - 10) = 0$ or $9x - 3 = 0$

c.
$$\sqrt{x+7}-x=-5$$

 $\sqrt{x+7}=x-5$
 $x+7=(x-5)$
 $x+7=x^2-10x+25$
 $x^2-11x+18=0$
 $(x-9)(x-2)=0$
 $x=9$ or $x=2$
Check: $x=0$

c.
$$\sqrt{x+7}-x=-5$$

$$\sqrt{x+7}-x=-5$$

$$\sqrt{x+7}=x-5$$

$$x+7=(x-5)$$

$$x+7=x^2-10x+95$$

$$x^2-11x+18=0$$

$$x^2-11x+18=0$$

$$x^2-9(x-2)=0$$

$$x+3$$

$$x+3=3x-1$$

$$x+3=3x$$

2. Solve the following inequanties. Express your answers in interval notation.

b.
$$\left| \frac{x-2}{4} \right| > 3$$

 $\frac{x-9}{4} > 3$
 $\frac{x-9}{4} > 3$
 $\frac{x-9}{4} < -3$
 $\frac{x-9}{4} < -10$
 $\frac{x-9}{4} < -10$
 $\frac{x-9}{4} < -10$

3. Write an inequality to represent the following statement:

A pilot is instructed to keep her plane at an altitude of over 29,000 feet but not to exceed 31,000 feet.

- 4. Let A (-4, 1) and B (-6, 0) be two points. Find
 - a. The distance between points A and B.

The distance between point
$$= (-6+4)^{2} + (0-1)^{2}$$

$$= \sqrt{4+1}$$

$$= \sqrt{5}$$

b. Find the midpoint of the line segment AB.

$$\left(-\frac{4-6}{2}, \frac{1+0}{2}\right)$$

= $(-5, \cdot 5)$

- 5. Given the linear equation -3y + 4x = 6, find
 - a. x-intercept(s): y = 0

$$4 \times = 6$$
 $X = \frac{3}{2}$
 $= 1.5$
 $(1.5, 0)$

b. y-intercept(s): $\times = 0$

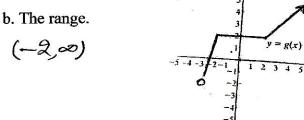
$$-3y = 6$$

 $y = -2$
 $(0, -2)$

6. Let $f(x) = -2x^2 + 4x$, find

a.
$$f(-3)$$
.
= $-2(-3)+4(-3)$
= $-2(9)-12$
= $-18-12$
= -30

b. State the domain of f.


7. If $f(x) = 2x^2 + x$, find the average rate of change from $x_1 = 0$ to $x_2 = 2$.

$$\frac{f(a)-f(o)}{2} = \frac{2[4]+2 - [o+o]}{2}$$

$$= \frac{10}{2}$$

$$= 5$$

- 8. Refer to the following graph to answer (a) (b). Write in interval form
 - a. The domain $(-3,\infty)$

9. Write the equation of the line that passes through the points (-3, -2) and (-1, 4). Express your answer in

slope-intercept form.
$$m = \frac{4 - (-2)}{-1 - (-3)} = \frac{6}{9} = 3$$

Equation of the line with slope 3 and the so' (-3,-2) is $y - (-2) = 3(x+3)$
 $y + 2 = 3x + 9$
 $y = 3x + 7$

10. Express the circle defined by $x^2 + y^2 + 12x - 14y + 84 = 0$ in standard form.

$$(x^{2}+12x)+(y^{2}-14y)=-84$$

$$(x^{2}+12x+36)+(y^{2}-14y+49)=36+49-84$$

$$(x+6)^{2}+(y-7)^{2}=1$$

$$(x-(-6))^{2}+(y-7)^{2}=(1)^{2}$$

a. Find the circle's radius :

b. Find the circle's center. (-6,7)

11. The value V of a computer t years after it is purchased is V = -300t + 1300. When will its value reach

\$100?
$$-300t + 1300 = 100$$

$$-300t = -1200$$

$$t = 4 \text{ years}$$