Fall 2014

Math 1300–Precalculus Final Exam

Your Name: __

Instructions: Please justify all your answers. No partial credit will be awarded for answers without calculations or explanations. You may **Not** use any electronic technology. Please sign your name below signifying that you have read, understood and will abide by these directions and will not cheat.

Your Signature: __

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible Points</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>166</td>
</tr>
<tr>
<td>Your Scores</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1: (6 points) Evaluate the following functions at the specified point. Find the exact values.

(1) \(\sin \left(-\frac{5\pi}{6} \right) \)

(2) \(\tan(\pi) \)

Problem 2: (10 points) Consider the first few terms of the sequence:

\[
\frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \frac{2}{81}, \cdots
\]

(1) Assuming that the pattern established by the terms shown continues, can this sequence be classified as arithmetic, geometric or neither? (Justify your answer).

(2) Find a general formula for the n’th term of the sequence.
Problem 3: (10 points) Find the quotient and remainder when the polynomial $3x^3 - 5x + 3$ is divided by $x - 2$.
Problem 4: (10 points) Verify the identity:

\[\frac{1}{1 - \cos(\theta)} + \frac{1}{1 + \cos(\theta)} = 2 \csc^2(\theta) \]
Problem 5: (15 points) Consider the equation

\[2x^2 + 3y^2 - 4x + 24y + 32 = 0 \]

(1) Put the equation in standard form and identify as a type of conic section.
(2) Graph the equation, label the foci, vertices and center.
Problem 6: (10 points) Rewrite the following expression as an algebraic function of x.

$$\sin\left(\arccos\left(\frac{x}{2}\right)\right)$$
Problem 7: (10 points) Solve the following equation for \(x \).

\[\log_3(x - 4) + \log_3(x + 4) = 2 \]
Problem 8: (15 points) Graph each of the equations in the following system on a single graph. Then solve the system algebraically. Describe the connection between your algebra and your graph. Provide ticks and labels for your graph.

\[2x + y = 3\]
\[x - 3y = 0\]
Problem 9: (10 points) Elevation sightings are made from points A and B respectively. The angles of inclination, $\frac{\pi}{6}$ and $\frac{\pi}{4}$, are marked along with the distance between the sightings. Determine the height h from the given data.
Problem 10: (10 points) Let $f(x) = x(10 - 7x + x^2)$.

(1) Determine the values of x for which $f(x) \leq 0$ and express your answer in interval notation.

(2) Express the domain of the function $g(x) = \frac{1}{\sqrt{f(x)}}$ in interval notation.
Problem 11: (10 points) The function $f(x) = -7 + \sqrt{4x - 5}$ is one to one on its domain.

(1) Find a formula for its inverse, $f^{-1}(x)$.

(2) Verify your formula is correct by computing and simplifying $f \circ f^{-1}(x)$.
Problem 12: (10 points) Let \(f(x) = 2x^2 - 4x - 1 \).

(1) Put \(f(x) \) in standard form and draw its graph.

(2) Identify the vertex and axis of symmetry in your graph of \(f \).

(3) Identify the interval(s) on which \(f \) is increasing and separately decreasing.

(4) Is the vertex an absolute maximum or minimum? Explain.
Problem 13: (20 points) Consider the rational function

\[f(x) = \frac{3x^2 - 3x}{x^2 - 5x + 4} \]

(1) Express the domain of \(f \) in interval notation.

(2) Find the \(x \) and \(y \) intercepts of \(f \).

(3) Find all vertical and horizontal asymptotes.

(4) Sketch a detailed graph of \(f \).
Problem 14: (20 points) Use the method of transformations to sketch a detailed graph of each of following functions. First sketch the basic function and then sketch its transformation. Label all asymptotes and intercepts.

(1) Basic: $y = \log(x)$ and Transformed: $y = 4 - \log(2x + 1)$.

(2) Basic: $y = \sqrt{x}$ and Transformed: $y = 1 - \sqrt{1 - x}$.