1) Determine if the relation is a function and state its domain:
\[y = \sqrt{2x + 3} \]

2) State the domain and range:

3) On the interval \([-4, 3]\) what is the minimum and/or maximum?

4) State the intervals when function is increasing, decreasing, and constant.

5) Write the equation of the line in slope intercept form and state the \(y\)-intercept and slope: \(-2x + y = 4\).

6) Write the equation in slope intercept form of the line that passes through the points \((4, -7)\) and \((2, -1)\).
7) Write the equation in slope intercept form of the line that is parallel to the line \(y = 3x + 5 \) and passes through the point \((3, 7)\).

Given \(f(x) = x^2 - 3x + 2 \)

8) Evaluate \(f(2)\).

9) Evaluate \(f(-3)\).

10) A sales person makes a base salary of $400 per week plus 12% commission on sales. Write a linear function to model the sales person's weekly salary \(S(x) \) for \(x \) dollars in sales.

11) Use transformations to graph the equation: \(f(x) = |x + 2| - 1 \)
12) Determine whether the graph of the equation is symmetric with respect to the y-axis, the x-axis, origin, or none of these: \(x^2 + y^2 = 4 \).

13) Determine whether the graph passes the vertical line test.

14) Determine whether the function is even, odd, or neither.
Given
\[r(x) = \begin{cases}
 x + 2 & \text{for } x \leq 0 \\
 -x^2 & \text{for } x > 0
\end{cases} \]

15) Evaluate \(r(0) \)

16) Evaluate \(r(5) \)

17) Given \(f(x) = -2x \) and \(g(x) = |x + 4| \), evaluate \((f - g)(3) \).

18) Given \(f(x) = x^2 + 3 \) and \(g(x) = 3x + 2 \), evaluate \((g \circ f)(x) \).

19) Write the function in vertex form: \(h(x) = 2x^2 - 4x + 3 \).

20) Graph the equation from #19