Matrix Operations

1. Try the following commands (at the prompt and then press [Enter]):
 - clear
 - \(M = \begin{bmatrix} 1,3,-1,6;2,4,0,-1;0,-2,3,-1;-1,2,-5,1 \end{bmatrix} \)
 - \(\text{det}(M) \)
 - \(\text{inv}(M) \)

2. Repeat the above procedure for the matrix:
 \[
 N = \begin{bmatrix} -1 & -3 & 3 \\ 2 & -1 & 6 \\ 1 & 4 & -1 \\ 2 & -1 & 2 \end{bmatrix}
 \]

3. Multiply \(M \) and \(N \) using \(M * N \). Can the order of multiplication be switched? Why or why not? Try it to see how MATLAB reacts.

4. Find the determinant and inverse of the following matrix:
 \[
 A = \begin{bmatrix} 1.2969 & .8648 \\ .2161 & .1441 \end{bmatrix}
 \]

5. Let \(B \) be the matrix obtained from \(A \) by rounding off to three decimal places. Find the determinant and inverse of \(B \). How do \(A^{-1} \) and \(B^{-1} \) differ? Explain how this happened.

6. Prepare a brief (< 1 page) written report describing what happened and answering all the questions. Writing quality will play a part in your grade.

This exercise introduces some basic matrix operations, the importance of matrix dimensions, and numerical sensitivity.

Copyright ©2002 Steve Chapin and Todd Young. All rights reserved. Please address comments to young@math.ohiou.edu.