The “Preservation Paradox”: Microbes as a Key to Exceptional Fossil Preservation in the Kirkpatrick Basalt (Jurassic), Antarctica

Loren E. Babcock
School of Earth Sciences, The Ohio State University, Columbus, OH 43210; babcock.5@osu.edu

Alycia L. Stigall
Department of Geological Sciences, Ohio University, Athens, OH 45701; stigall@ohio.edu

INTRODUCTION

One of the most striking and paradoxical observations about the evolutionary record is that the most numerous and diverse animals on Earth are represented by a weak fossil record - among them, insects, spiders, scorpions, mites, myriapods, shrimp, nematodes, "worms" of various kinds, and countless other species lacking hard skeletal parts. Conversely, groups best represented in the fossil record constitute a relatively small fraction of total species diversity, including mollusks, brachiopods, corals, echinoderms, vertebrates, and other animals having hard (biomineralized) shells, bones, or teeth, which today constitute less than 20% of animal species. Compensating for this "preservation paradox," in which the most abundant and diverse forms on Earth have a weak fossil record, usually involves the discovery of deposits where both biomineralized fossils and non-biomineralized fossils have been preserved. Such deposits are variously referred to as Konservat-Lagerstätten, Lagerstätten, or deposits of exceptional preservation (DEP’s). Well-known examples (see Allison and Briggs, 1991 and references therein) include the Chengjiang deposit (Cambrian of Yunnan, China), the Burgess Shale (Cambrian of British Columbia), the Rhynie Chert (Devonian of Scotland), the Mazon Creek deposit (Carboniferous of Illinois), the Solnhofen Limestone (Jurassic of Germany), and the Green River Formation (Eocene of Wyoming, Colorado, and Utah). Studying fossils from these and similar deposits provide rare snapshots of organisms and ecosystems otherwise not preserved in the fossil record.

LOCATION AND STRATIGRAPHY

This paper focuses on thin sedimentary deposits interbedded within lava flows of the Kirkpatrick Basalt (Ferrar Group; Jurassic) of Antarctica, which is exposed in South Victoria Land (Carapace Nunatak) and isolated peaks in the central Transantarctic Mountains (Beardmore and Shackleton Glacier areas; Fig. 1) (Ball et al., 1979; Tasch, 1977, 1987; Barrett et al., 1986; Bradshaw, 1987; Elliot et al., 1991). Two of these sedimentary horizons can be correlated widely and indicate brief periods of relative cessation of extrusive magmatism. The Kirkpatrick Basalt itself forms the cap sequence on tholeiitic rocks indicate brief periods of relative cessation of extrusive magmatism. The Kirkpatrick Basalt itself forms the cap sequence on tholeiitic rocks of the Ferrar Large Igneous Province (FLIP), which occur in a 3,500 km linear belt along the Transantarctic Mountains from the Weddell Sea region to North Victoria Land (Elliot and Fleming, 2000, 2004). The FLIP was emplaced about 180±3.5 Ma during initial breakup of Gondwana in the Early Jurassic (Toarcian Epoch), from a source
thought to be a triple junction in the proto-Weddell Sea (Elliot and Fleming, 2000, 2004). Radiosotopic dating constrains the duration of FLIP emplacement to a brief interval, less than 1 million years (Heiman et al., 1994). This extrusive magmatism ends with the capping iron-rich lavas of the Kirkpatrick Basalt, which comprises less than 1% of the FLIP rocks that locally exceed 2 km in thickness (Elliot and Fleming, 2004).

SEDIMENTARY INTERBEDS IN THE KIRKPATRICK BASALT

The interbeds of the Kirkpatrick Basalt record sedimentary and biotic processes in relatively shallow lakes and ponds, and in surrounding wetlands to upland areas, during two brief intervals when active magmatic activity had slowed along an expanding rift system in high latitude Pangaea. Among these sedimentary interbeds are two dominant types of subaqueous origin: (1) fine-grained, thinly laminated siliciclastic deposits (Fig. 2) and (2) unusual carbonate deposits rimming and filling spaces between basalt pillows (Fig. 3). Both of these subaqueous deposits transition laterally into thin paleosols and poorly consolid-ated peat deposits, where large permineralized (silicified) logs occur locally in the Beardmore Glacier region (Taylor and Taylor, 1990).

The siliciclastics were evidently deposited in small, relatively shallow, freshwater lakes and pools (Tasch, 1977, 1987). In many places, synsedimentary deformation of the laminations is associated with igneous extrusions. At Carapace Nunatak, for example, large clasts of lithified or semilithified sediment appear to have been rafted by hot magma (Bradshaw, 1987) (Fig. 2b). Elsewhere, numerous thin dark brown to black laminae and crinkled layers with clotted textures are interpreted as microbial mat communities of photosynthetic bacteria and possibly algae (compare Schieber, 1999; Noffke et al., 2001). The fossil assemblage in these environments is dominated by small (1-2 cm) bivalved spinicaudatan (“conchostracan”) arthropods that are today most typical of ephemeral, alkaline pond settings (Fig. 4a) (Tasch, 1987). Another untested possibility is that microbial consortia on the surface of cooler basalt pillows created an alkaline chemical microenvi-
the Kirkpatrick Basalt. Spinicaudatans (dominated by Carapacesteria, Fig. 4a) are densely packed in many thin layers at localities in both South Victoria Land and the Central Transantarctic Mountains. Their enormous numbers and nearly uniform lengths presumably reflect a high reproductive (and presumably rapid maturation) rate in pools where they had few predators. The growth lines in the carapaces of Carapacesteria in the Kirkpatrick beds indicate that specimens in the individual layers were all of the same age at death. This suggests that each bedding plane represents a single generation of spinicaudatans that hatched simultaneously during the initial spring flooding of the pond, a pattern mimicking that of modern spinicaudatans (Weeks et al., 1997). Carapaces of the freshwater ostracod, Darwinula (Fig. 4e), commonly occur on slabs with spinicaudatans.

In South Victoria Land, nymphs of ephemeropteran insects (Fig. 4b) are present in certain thin horizons, apparently confined to narrow time intervals, on Carapace Nunatak. Some localities in the Central Transantarctic Mountains yield abundant remains of fishes (Fig 4c) (mostly Oreochima) most of them fully or largely articulated. This again suggests that predaceous and scavenging activity in the Kirkpatrick lakes was minimal. Likewise there is little evidence of bioturbation of benthic muds in the siliciclastic-dominated lakes. Lack of an active infauna may have provided an opportunity for microbial mat communities to flourish.

In numerous other instances of exceptional...
preservation in the Phanerozoic, biodegradation, including predation and scavenging, is minimal and sediment bioturbation largely absent. Non-biomineralized remains often survived long enough in the Kirkpatrick lakes to undergo early diagenesis, especially if it were mediated by microbial decay agents within a few weeks (compare Briggs et al., 1993; Wilby et al., 1996; Borkow and Babcock, 2003). Microbial mediation of silicification likely occurred in the siliciclastic interbeds of the Kirkpatrick Basalt. Microbial influence is suggested by differential replacement along zones of weakness between carapace layers as well the increased silicification of carapaces preserved within microbial-mat-influenced versus other sediments (Fig. 5).

Plant remains, including bennettitalean leaves, silicified trunks of gymnosperms, and peat (or low grade coal), are another important constituent of the fossil assemblage in the siliciclastic interbeds of the Kirkpatrick Basalt. Most of the plants lived in wetlands surrounding relatively cool water lakes, or somewhat upland from them. The sizes of the tree trunks, often 50 cm or more in diameter, provided a minimum duration between lava flows. The large diameter of these trunks suggests that some of the trees were several decades to perhaps a hundred years or more in age. Leaves and peat are preserved as hydrocarbons, whereas the logs are permineralized with silica (Taylor and Taylor, 1990) presumably sourced from Si-rich waters derived from nearby volcanic sources.

Silicification of plant material associated with igneous sources is not uncommon (e.g., Chinle Formation, see Sigleo, 1979 and Creber and Ash, 2004; Rhynie Chert, see Rice et al., 2002 and Trewin et al., 2003), but instances where a nearby hydrothermal source for magmatophreatic interactions can be identified are unusual. The Rhynie Chert (Devonian of Scotland) is perhaps the best-known example (Trewin et al., 2003). Silicification of woody material in the Kirkpatrick Basalt provides a window into paleoenvironments and climate of high-latitude Gondwana during the Jurassic (see Taylor and Taylor, 1990; Parrish, 1990).

CONCLUSIONS

Sedimentary interbeds deposited over lava flows of the Kirkpatrick Basalt during the Early Jurassic splitting of Gondwana represent unusual freshwater paleoenvironments. They illustrate an important means of solving some of the issues related to the “preservation paradox” for a critical paleoenvironmental setting—high latitude Gondwana during the early Mesozoic. Hot lakes associated with hydrothermal vents were likely home to thermophile microbes (archeans) capable of withstanding not only high temperature, but also sulfidic water. They promoted the precipitation of carbonate laminae even around basaltic pillows that extruded into the water. Other freshwater lakes away from direct contact with hydrothermal vents, where water temperatures were cooler, were home to low diversity fauna and microbial mat communities. Vascular plants were rooted beyond the margins of the water. Carnivory was limited, and exceptional preservation of non-biomineralized or lightly mineralized organisms became commonplace. Microbial decay agents contributed to rapid diagenesis.

ACKNOWLEDGMENTS

We would like to thank Molly Miller, Steve Goodbred, and Maria Ruiz-Yantin for their careful reviews and editorial suggestions, which greatly improved this paper. This work was largely supported through the financial and logistical support of the National Science Foundation (OPP 0229757, 0345829) to Babcock and a faculty leave from Ohio University to Stigall. A grant from the TELR fund of The Ohio State University supported some laboratory analyses.

REFERENCES


Accepted October 2006
INSIDE: “PRESERVATION PARADOX”
PLUS: PRESIDENT’S COMMENTS
ICHNOLOGY 2007 CONFERENCE
2006 SOCIETY RECORDS