Outline
- Physical and logic design
- CAD tools
- Algorithms and heuristics
- Synthesis
- Design Methodologies
- Physical Design
- Placement and Routing
- Effect of Deep Submicron
- Backannotation

Digital Testing: Design Flow

Logic and Physical Design

CAD Tools
- All aspect of ASIC design depends on CAD tools
- CAD programs perform different tasks: Design entry, Simulation, Synthesis, layout, Test pattern generation, Floor planning, Technology mapping, Place and route, DRC, LVS, Parameter extraction
- Most these problems are NP-complete
- There is a need for algorithms that utilize some heuristic and a cost function to stop the computation.

Algorithms
- A recipe to solve a problem
- “Any well defined computational procedure that takes some values, as input and produces some values, as output.”
- The solution is valid most of the time
- Must be executed in reasonable time

Synthesis

Synthesis process according to representation level and tasks
Synthesis

High level synthesis flow:
1. System to RTL level
2. RTL to logic or register structure
3. Register to gate structure
4. Logic to gate structure
5. Structural to physical domain

Comparing Synthesis Levels

Behavioral Domain

Structural Domain

Physical Domain

Comparing Design Levels

RTL Optimization

Multilevel Logic

Design Methodologies

Comparing Design Levels
Semicustom Design

(a) Standard cells
(b) Gate arrays

Gate Arrays

A Gate Array 6-transistor cell

Patterned Cell

Metal
Diffusion
Poly

Routing

Interconnect resources in FPGA

Floor Planning

Various floor plans for the same chip

Floor Planning Perspective

Placement and Routing
Mincut Approach to Placement

(a) original

(b) final

(c) plan for iterative improvement

Spanning Tree

Global routing based on a spanning tree

Back Annotation

Two steps in back annotation:
- Netlist extraction
- Parameter extraction