Object detection and representation in motivated conscious machines

Authors: Dilip Kumar Prasad, Nanyang Technological University, Singapore (dilipprasad@gmail.com)
Janusz A. Starzyk, Ohio University, Athens, OH, USA (starzyk@bobcat.ohiou.edu)

General Object Detection methods

1. **Target:** Intelligent and/or cognitive machines
2. **Non-adaptive, fixed, and algorithmic approach:** Fixed thresholds, fixed parameters of matching algorithms, fixed learning algorithms and control parameters, fixed topology and maximum size of the object template
3. **No use of intelligence or cognitive capability of the machine**
4. **Either generative or discriminative learning** (not both)
5. **Supervised learning:** What to learn, from where, how to learn, how to validate, how to store (or represent) — all these are predefined by human designer (often based on heuristics) and fixed through the lifetime of the object detection execution.
6. **Key features:** Scalability (within a certain range), invariance (limited)

General block diagram of contemporary object detection methods (on non-conscious machines)

- **Codebook of object templates**
- **Matching Block**
- **Template learning block**
 - **edge feature extraction**
 - **shapes extraction**
 - **texture extraction**

Proposed object detection method for conscious machine

1. **Target:** Intelligent machines (with motivation and consciousness)
2. **Motivations:** Help the machine in making decisions, choosing schemes for satisfying the current goals
3. **Conscious agent can choose adaptively and dynamically:** What objects are interesting, what features to learn, from where, what learning scheme, how to accumulate and update its knowledge etc.
4. **Machine develops its own heuristics, experience, preferences, etc.**
5. **Key features:** Unsupervised learning, scalability (machine decided), invariance (machine decided), anticipation, combination of generative and discriminative learning

Block diagram of the proposed computational model of object detection by a motivated conscious machine

- **Episodic memory**
 - **Codebook of hierarchical templates**
 - **Central executive**
 - **Attention switching**
 - **Goal creation system (GCS)**
 - **Semantic memory**
 - **Pain/Reward signal generation**
 - **Matching Block**
 - **Sensory Processors**
 - **SP-1 (edge feature extraction)**
 - **SP-2 (shapes extraction)**
 - **SP-N (texture extraction)**

Object representation: hierarchical object templates

- **Most generic features** (high likelihood) on top
- **Lower level:** More class specific or discriminative features
- **Contents of each node:** The feature, the type of feature, the type of matching technique, the type and amount of agility to be considered, and the likelihood ratio
- **Weights of each connection:** Likelihood of presence of a feature given the upper node in the connection is present.

An example of the proposed hierarchical code

- **Training image 1**
- **Training image 2**
- **Rotation:** ±120°
 - Translation: ±10 pixels in x direction
 - ±5 pixels in y direction
- **Scale:** 0.8-1.2
- **Chamfer Matching**
- **Bounding box size:**
 - 100 pixels in x direction
 - 30 pixels in y direction
- **Car**
- **Rotation:** ±10°
 - Translation: ±10 pixels in x direction
 - ±10 pixels in y direction
- **Scale:** 0.8-1.5
- **Chamfer Matching**

Impact of the proposed object detection methods

- **Simple manner of incorporating dynamics and adaptivity.** No complicated non-linear equations for steering the object detection method are required.
- **Powerful in exploring various possibilities, learning various representations, choosing suitable parameters and learning methods.** (generative or discriminative learning).
- **More realistic and wider range of detection/recognition may be incorporated.**
- **Such model is highly scalable.** It is capable of learning not only new object categories, but also learning new features for existing object categories.
- **Different level of discriminative capability (as the agent finds suitable) and generative capability may be used for different objects (depending upon the motivation and goals of the agent).**

Dynamic updating of the exiting templates and learning from the test data is possible.

Object detection and representation in motivated conscious machines

Authors: Dilip Kumar Prasad, Nanyang Technological University, Singapore (dilipprasad@gmail.com)
Janusz A. Starzyk, Ohio University, Athens, OH, USA (starzyk@bobcat.ohiou.edu)

General Object Detection methods

1. Target: intelligent and/or cognitive machines
2. Non-adaptive, fixed, and algorithmic approach: fixed thresholds, fixed parameters of matching algorithms, fixed learning algorithms and control parameters, fixed topology and maximum size of the object template
3. No use of intelligence or cognitive capability of the machine
4. Either generative learning or discriminative learning (not both)
5. Supervised learning - what to learn, from where, how to learn, how to validate, how to store (or represent) – all these are predefined by human designer (often based on heuristics) and fixed through the lifetime of the object detection execution.
6. Key features: scalability (within a certain range), invariance (limited)

General block diagram of contemporary object detection methods (on non-conscious machines)

- **Codebook of object templates**
- **Matching Block**
- **Template learning block**
 - **edge feature extraction**
 - **shapes extraction**
 - **texture extraction**

Proposed object detection method for conscious machine

1. Target: intelligent machines (with motivation and consciousness)
2. Motivations help the machine in deciding goals of object detection and choosing suitable schemes for satisfying the current goals
3. Conscious agent can choose adaptively and dynamically: what objects are interesting, what features to learn, from where, using what learning scheme, how to accumulate and update its knowledge etc.
4. Machine develops its own heuristics, experience, preferences, etc.
5. Key features: unsupervised learning, scalability (machine decided), invariance (machine decided), anticipation, combination of generative and discriminative learning

Block diagram of the proposed computational model of object detection by a motivated conscious machine

- **Episodic memory**
 - **Codebook of hierarchical templates**
 - **Central executive**
 - **Attention switching**
 - **Goal creation system (GCS)**
 - **Semantic memory**
 - **Pain/Reward signal generation**
 - **Matching Block**
 - **Sensory Processors**
 - **SP-1 (edge feature extraction)**
 - **SP-2 (shapes extraction)**
 - **SP-N (texture extraction)**

Object representation: hierarchical object templates

- Most generic features (high likelihood) on top
- Lower level: more class specific or discriminative features
- Contents of each node: the feature, the type of feature, the type of matching technique, the type and amount of agility to be considered, and the likelihood ratio
- Weights of each connection: likelihood of presence of a feature given the upper node in the connection is present.

An example of the proposed hierarchical code

- Training image 1
- Training image 2
- Rotation: ±120°
 - Translation: ±10 pixels in x direction
 - ±5 pixels in y direction
- Scale: 0.8-1.2
- Chamfer Matching
- Bounding box size:
 - 100 pixels in x direction
 - 30 pixels in y direction
- Car
- Rotation: ±10°
 - Translation: ±10 pixels in x direction
 - ±10 pixels in y direction
- Scale: 0.8-1.5
- Chamfer Matching

Impact of the proposed object detection methods

- Simple manner of incorporating dynamics and adaptivity. No complicated non-linear equations for steering the object detection method are required.
- Powerful in exploring various possibilities, learning various representations, choosing suitable parameters and learning methods (generative or discriminative learning).
- More realistic and wider range of detection/recognition may be incorporated.
- Such model is highly scalable. It is capable of learning not only new object categories, but also learning new features for existing object categories.
- Different level of discriminative capability (as the agent finds suitable) and generative capability may be used for different objects (depending upon the motivation and goals of the agent).

Dynamic updating of the exiting templates and learning from the test data is possible.
