Digital Testing: Design Representation and Fault Detection

Outline
- Design Representation Model
- Switching functions
- Boolean Difference
- Finite State Machines
- Tabular Representation
- Graphical Representation
- Graphs
- Binary Decision Diagrams
- Netlists
- Hardware Description Languages

Design Paradigm
- The design representation space consists of domains and levels
- Behavioral domain most abstract
- Structural domain specifies the architecture
- Physical domain includes the transistors and layout

Domains and Levels

<table>
<thead>
<tr>
<th>Domain</th>
<th>Behavioral</th>
<th>Structural</th>
<th>Physical</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>System Specifications</td>
<td>Blocks</td>
<td>Chip</td>
</tr>
<tr>
<td>RTL</td>
<td>RTL Specifications</td>
<td>Registers</td>
<td>Macro Cells</td>
</tr>
<tr>
<td>Logic</td>
<td>Boolean Functions</td>
<td>Logic Gates</td>
<td>Standard Cells</td>
</tr>
<tr>
<td>Circuit</td>
<td>Differential Equations</td>
<td>Transistors</td>
<td>Masks</td>
</tr>
</tbody>
</table>

Domains

- Behavioral Domain
 \[a = b \cdot c \]
 \[z = \neg (a \cdot d) \]
- Structural Domain
- Physical Domain

Levels

System Level

Gate Level

Register Level

Circuit Level
Fault detection and redundancy

Definition:
A test vector t detects a fault t if \(Z_f(t) \neq Z(t) \)
\(Z(x) \) - logic function of circuit N
\(x \) - input vector
\(t \) - a specific input (test) vector
\(N_f \) - a faulty circuit (N changes as a result of fault f)

Example:
\(Z_1 = x_1 \cdot x_2 \)
\(Z_{1f} = x_1 + x_2 \)
\(Z_2 = x_2 \cdot x_3 \)
\(Z_{2f} = (x_1 + x_2) \cdot x_3 \)
\(Z(011) = 01, Z_{1f}(011) = 11 \Rightarrow t = 011 \) detects f

The set of all tests that detect f is given by
\(Z(x) \oplus Z_f(x) = 1 \)

Fault detection and redundancy

Example:
Consider test \(t = 011 \)

SPECIFIC-FAULT ORIENTED TEST SET GENERATION

TWO FUNDAMENTAL TEST GENERATION STEPS
1. Activate, Excite, Provok e or Setup the Fault
2. Make Fault Observable, Fault Sensitization
 * Find Primary Input Values that Cause Error Signal in Faulty Circuit
 * For Single-Stuck-at-f Fault — Place \(\neg \) at Fault Site
3. Propagate the Resulting Error to a Primary Output
 * Path Sensitization
 * Find Primary Input Values that Sensitize Error Signal to Primary Output

Fault detection and redundancy

a set of inputs which detect all possible (detectable) faults is called a complete detection test set
an input \(b = (b_1 \ldots b_n) \) distinguishes a fault \(\alpha \) from another fault \(\beta \) if \(Z_\alpha \neq Z_\beta \) or \(Z_\alpha \oplus Z_\beta = 1 \)
a set of tests which distinguish all pairs of fault is called a complete location test set
Fault detection and redundancy

Example:
Consider fault $\alpha = x_2 s a_1$ and $\beta = x_3 s a_0$
• find Z_1, Z_α & Z_β
• check if (101) detects Z_α
• check if (101) distinguishes Z_α & Z_β

\[
\begin{align*}
Z &= [(x_1 x_2)'(x_2 x_3)']' \\
&= x_1 x_2 + x_2 x_3 \\
&= x_2 (x_1 + x_3)
\end{align*}
\]

$\alpha = x_2 s a_1$ and $\beta = x_3 s a_0$
$Z \oplus Z_\alpha | (1,0,1) = Z \oplus (x_1 + x_3) = 1 \oplus 1 = 1$
$Z_\alpha \oplus Z_\beta | (1,0,1) = Z \oplus (x_1 x_2) = 1 \oplus 0 = 1$
We see that the same vector $x = (1,0,1)$ distinguishes these two faults

Fault detection and redundancy

Example:
If only f out of x faults have been detected by a test then “test coverage” is $t_c = f/x \leq 1$

One-dimensional path sensitization
A line whose value changes in the presence of the fault is sensitized to the fault by the test t. A path composed of sensitized lines is called a sensitized path.

Fault detection and redundancy

Path sensitization algorithm
I. specify inputs to generate at the site of the fault.
II. propagate error to the output
III. specify inputs to obtain signal values needed in II

Element evaluation

Truth tables
• requires 2^n entries
Input Scanning is simpler
• gates described by
 - $c --$ controlling value
 - $i --$ inversion

<table>
<thead>
<tr>
<th>c</th>
<th>x</th>
<th>$c \oplus i$</th>
<th>c</th>
<th>x</th>
<th>$c \oplus i$</th>
<th>c'</th>
<th>c'</th>
<th>$c' \oplus i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>OR</td>
<td>NAND</td>
<td>NOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Fault detection and redundancy

Lemma:
Gate with c, i - controlling and inversion values
• all inputs of G sensitized to f have the same value (say a)
• all not sensitized inputs have value c'
• the output of Gate is equal a ⊕ i

<table>
<thead>
<tr>
<th>c x x</th>
<th>c ⊕ i</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>0 0</td>
</tr>
<tr>
<td>OR</td>
<td>1 0</td>
</tr>
<tr>
<td>NAND</td>
<td>0 1</td>
</tr>
<tr>
<td>NOR</td>
<td>1 1</td>
</tr>
</tbody>
</table>

The rules for error propagation with sensitized inputs equal to a

<table>
<thead>
<tr>
<th>c i</th>
<th>Gate</th>
<th>Other inputs</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>AND</td>
<td>all must be 1</td>
<td>a</td>
</tr>
<tr>
<td>0 1</td>
<td>NAND</td>
<td>all must be 1</td>
<td>a'</td>
</tr>
<tr>
<td>1 0</td>
<td>OR</td>
<td>all must be 0</td>
<td>a</td>
</tr>
<tr>
<td>1 1</td>
<td>NOR</td>
<td>all must be 0</td>
<td>a'</td>
</tr>
</tbody>
</table>

Detectability
• if no test can detect fault f => f is **undetectable**
• such a circuit is **redundant**
• undetectable fault can prevent detection of another fault

Example:
- b sa0 is detected by t = 1101
Detectability

Example: \(b \text{ sa0 is no longer detected by } t=1101 \) if \(a \text{ sa1 is present} \)

\[\begin{align*}
A = 1 & \quad a = 0/1 \\
C = 0 & \quad b = 1/0
\end{align*} \]

Detectability

Redundant circuit can always be simplified by removing a gate or gate input

Rules

<table>
<thead>
<tr>
<th>Undetectable fault</th>
<th>Simplification rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND (NAND) input sa1</td>
<td>remove input</td>
</tr>
<tr>
<td>AND (NAND) input sa0</td>
<td>remove gate, replace by 0(1)</td>
</tr>
<tr>
<td>OR (NOR) input sa0</td>
<td>remove gate, replace by 1(0)</td>
</tr>
<tr>
<td>OR (NOR) input sa1</td>
<td>remove gate, replace by 1(0)</td>
</tr>
</tbody>
</table>

Redundancy may be used to avoid hazards

Example: Consider: \(b=c=1 \), \(a \) changes from 1 to 0

\[\begin{align*}
a = 1 & \quad b = 1/0 \\
c = 1 & \quad b = 1/0
\end{align*} \]

boolean Algebra

- \(f(x) \), has a range, \(B \), and a domain, \(B^n \), where \(B = \{0, 1\} \) and \(: B^n \rightarrow B \).
- For any element \(c \in B \), the constant function is \(f(x) = c \), where \(x \in B^n \).
- For any \(x \in B^n \), the projection function is \(f(x_i) = x_i \).
- The set of variables \(\{x_1, x_2, \ldots, x_n\} \) is called the support of the function.
- If \(g \) and \(h \) are \(n \)-variable functions, then the functions \(g + h, g \cdot h, \) and \(g' \) are defined.

Properties of Boolean functions

- \(g \cdot h(x_1, \ldots, x_n) = g(x_1, x_2, \ldots, x_n) \cdot h(x_1, x_2, \ldots, x_n) \)
- \(g(x_1, \ldots, x_n) = g(x_2, \ldots, x_n) \cdot h(x_1, x_2, \ldots, x_n) \)
- \(g(x_1, \ldots, x_n) = g(x_1, x_2, \ldots, x_n) \cdot h(x_1, x_2, \ldots, x_n) \)

There is only a finite set of distinct functions of \(n \)-variable.

A Boolean function can be expressed in different forms, for instance

\[f(x_1, x_2, x_3) = x_1 \cdot x_2 + x_2 = x_1 + x_2 \]
Boolean difference

- Definition: The Boolean difference of \(f(x) \) is equal \(\Delta(f) = \frac{df(x)}{dx} = f(x) \oplus f(x') \)
- An equivalent definition results from the following Shannon's law \(f(x) = x \cdot f(1) + x' \cdot f(0) \)
- Lemma: \(f(x) \oplus f(x') = f(0) \oplus f(1) \)
- Then the Boolean difference is

\[
\begin{array}{c}
\text{Definition:} \\
\Delta(f) = \frac{df(x)}{dx} = f(x) \oplus f(x') \\
\text{An equivalent definition results from the following Shannon's law:} \\
f(x) = x \cdot f(1) + x' \cdot f(0) \\
\text{Lemma:} f(x) \oplus f(x') = f(0) \oplus f(1) \\
\text{Then the Boolean difference is:}
\end{array}
\]

Fault Detection

As an example, let us consider the function \(f(x) = g(x) + x_3 \)
- Thus \(\frac{df(x)}{dx} = x_3 \oplus (x_1 \cdot x_2) = 1 \)
- If \(x_1 = 1 \) and \(x_2 = 0 \)
- For the SA1 and SA0 faults on \(x_3 \), the patterns are then \(x_3 = 0 \) and \(x_3' = 1 \)
- For the first fault, we then must have \(x_3 \oplus x_1 x_2 = 1 \). This results in three patterns: \(x_1 x_2 x_3 = (001, 011, \text{or } 101) \)
- and for the other fault, we have \(x_3 = 0 \) and \(x_3' = 1 \)

Fault Detection: Example

- We will repeat this calculation for stuck-at faults on \(x_3 \).
- First, we calculate the Boolean difference: \(\frac{df(x)}{dx} = g(x) \oplus 1 = x_3 \cdot x_1 x_2 \).
- Then we equate its products with \(x_3 \) and \(x_3' \) to 1. The patterns to detect the faults \(x_3/0 \) and \(x_3/1 \) are then \(x_3 \cdot x_1 x_2 = 1 \) and \(x_3' \cdot x_1 x_2 = 1 \).
- For the first fault, we then must have \(x_3 \cdot x_1 x_2 = 1 \). This results in three patterns: \(x_1 x_2 x_3 = (001, 011, \text{or } 101) \)
- and for the other fault, we have \(x_3 = 0 \) and \(x_3' = 1 \)
Boolean difference

Example:

\[T_1 = x_1'(df/dx_1) = x_1'(f(0) \oplus f(1)) \]
\[= x_1'(x_1 \oplus (x_2 + x_3)) \]
\[= x_1'(x_1'x_2 + x_1'x_3 + x_1x_2' + x_1x_3') \]

\(x=0001 \) is a solution which sensitizes the path \(x_G G_G G \)

Boolean difference

Example: find the Boolean difference of \(f \) w.r.t. \(x_2 \)

\[df \]
\[dx_2 = f(0) \oplus f(1) = x_1 \oplus x_1 = 0 \]

\(T_0 = 0 \) \(\frac{df}{dx_2} = 0 \) \(\rightarrow \) Not testable

\(T_1 = x_2 \frac{df}{dx_2} = 0 \)

Boolean difference

Theorem:
The set of all tests which detect \(h \ sa0 \) is defined by:

\[T_0 = h(x) \frac{df(x, h)}{dh} \]

And \(h \ sa1 \) is defined by:

\[T_1 = \overline{h(x)} \frac{df(x, h)}{dh} \]
Boolean difference

Example:
Find all h_{sa0} tests

$$f = h + x_1x_4 + x_2x_3$$
where $h = x_1x_2$

$$T_h = h \frac{df}{dh}$$

$$= h[(f(h=0) \oplus f(h=1)]$$

$$= h(x_1x_4 + x_2x_3) \oplus 1$$

$$= h_x_1x_4 + h_x_2x_3$$

$$= n_1x_1\overline{r_1} + n_2x_2$$

$$= x_1 \overline{x_2}$$

Boolean difference

Boolean difference can be formed by concatenating Boolean differences (Simple chain rule)

$$\frac{dZ}{dx} = \frac{dZ}{dy} \frac{dy}{dx}$$

In the previous example we have:

$$f = G_x + G_y, \; G_x = G_x \overline{x_4}, \; G_y = G_y \overline{x_4}$$

$$\frac{df}{dG_x} \frac{dG_x}{dx} = \frac{df}{dG_y} \frac{dG_y}{dx}$$

$$= \overline{G} \cdot x_1 = \overline{x_2} \cdot x_2 = (x_1 + x_2)x_1 = x_1$$

Boolean difference

Test for multiple faults

for $x_1 = 0 \& x_2 = 0$

$$T_{0,0} = x_1x_2(f(x_1,x_2) \oplus f(\overline{x_1},\overline{x_2}))$$

$$= x_1x_2(f(00) \oplus f(11))$$

these results can be extended to more than 2 faults

$x_1, x_2, x_3 = 0$

$$T_{0,0,0} = x_1x_2 \cdots x_n(f(x_1,x_2,\cdots x_n) \oplus f(\overline{x_1},\overline{x_2},\cdots \overline{x_n}))$$

$$= x_1x_2 \cdots x_n(f(1\cdots 1) \oplus f(00\cdots 0))$$

Boolean difference

Test for multiple faults

for $x_1 = 1 \& x_2 = 1$

$$T_{1,1} = x_1x_2(f(x_1,x_2) \oplus f(\overline{x_1},\overline{x_2}))$$

$$= x_1x_2(f(10) \oplus f(01))$$

for $x_1 = 0 \cup x_2 = 0$

$$T_{0,0} = f \oplus f(00)$$

$$= x_1x_2 \frac{df}{dx_1x_2} + x_1 \frac{df}{dx_1} + x_2 \frac{df}{dx_2}$$
Finite State Machine

- A finite state machine is formally expressed as a 6-tuple \((\mathcal{I}, \mathcal{S}, \delta, S_0, \mathcal{O}, \lambda)\), where
 - \(\mathcal{I}\) is the input alphabet, that is, a finite non-empty set of inputs
 - \(\mathcal{S}\) is the finite and non-empty set of states
 - \(\delta: \mathcal{S} \times \mathcal{I} \rightarrow \mathcal{S}\) is the next state function
 - \(S_0 \subseteq \mathcal{S}\) is the set of initial states
 - \(\mathcal{O}\) is the output alphabet
 - \(\lambda: \mathcal{S} \times \mathcal{I} \rightarrow \mathcal{O}\) is the output function for a Mealy machine [Mealy 1955] and,
 \(\lambda: \mathcal{S} \rightarrow \mathcal{O}\) is the output function for a Moore machine [Moore 1956].

Tabular Representation

<table>
<thead>
<tr>
<th>State</th>
<th>I = 0</th>
<th>I = 1</th>
<th>Next State</th>
<th>Present State</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>0</td>
<td>D</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>1</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>D</td>
</tr>
</tbody>
</table>

Table 3.3 State Table for FSM

<table>
<thead>
<tr>
<th>Present</th>
<th>Next</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>0</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>B</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabular Representation

<table>
<thead>
<tr>
<th>Minterm</th>
<th>F1</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>d</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>111</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3.2 Combinational Functions Defined in Tabular Form.

Graphical Representation (FSM)
Graphs

(a) (b) (c) (d)

\[x_1 x_2 + x_2 x_3 \]

Binary Decision Diagram

(a) (b) (c)

\[f = x_1 + x_2 \]

Test Generation with BDD

\[f = x_1 x_2 x_3 + x_1 x_2 x_1 \]

to test for \(x_1 \) sa faults get
\[\frac{df}{dx_1} = x_2 x_2 x_3 + x_1 x_2 x_1 \]

Netlists

CMOS inverter

- \text{MN} 3 2 0 0 \text{CMOSN} \ W=1.8U, L=0.5U
- \text{MP} 3 2 1 1 \text{CMOSP} \ W=5.4U, L=0.5U
- CL 3 0 2pF

\text{Voltages used}

- \text{VDD} \ 1 0 DC 5V
- \text{Vin} 2 0 0 3.3 0.2

\text{Models used}

- \text{MODEL CMOSNI} \ \text{NMOS} \ \text{LEVEL}=3 \ \text{PHI}=0.700000 \ \text{TOX}=9.6000E-09 \ \text{J}=0.200000U
- \text{MODEL CMOSP} \ \text{PMOS} \ \text{LEVEL}=3 \ \text{PHI}=0.700000 \ \text{TOX}=9.6000E-09

\text{Weff} = \text{Wdrawn} - \text{Delta}_W

The suggested \(\text{Delta}_W \) is \(4.1080E-07 \)
Hardware Description Languages (HDL)

- Developed originally at universities,
 - AHDL (Hill 91)
 - ISP (Barbacci 77)

- Characteristics: Representation
 - of hierarchical design description
 - at different levels
 - Behavioral, RTL and Gate

- Major languages: VHDL, Verilog-HDL, Hardware C