Journal of Vertebrate Paleontology

A revision of the Upper Cretaceous lepidosirenid lungfishes from the Quseir Formation, Western Desert, central Egypt

Kerin M. Claeson, Hesham M. Sallam, Patrick M. O’Connor & Joseph J. W. Sertich

A revision of the Upper Cretaceous lepidosirenid lungfishes from the Quseir Formation, Western Desert, central Egypt

To cite this article: Kerin M. Claeson, Hesham M. Sallam, Patrick M. O’Connor & Joseph J. W. Sertich (2014) A revision of the Upper Cretaceous lepidosirenid lungfishes from the Quseir Formation, Western Desert, central Egypt, Journal of Vertebrate Paleontology, 34:4, 760-766, DOI: 10.1080/02724634.2014.838574

To link to this article: http://dx.doi.org/10.1080/02724634.2014.838574

PLEASE SCROLL DOWN FOR ARTICLE
A REVISION OF THE UPPER CRETACEOUS LEPIDOSIRENID LUNGFISHES FROM THE QUSEIR FORMATION, WESTERN DESERT, CENTRAL EGYPT

KERIN M. CLAESON,1,2 HESHAM M. SALLAM,2 PATRICK M. O’CONNOR,3,4 and JOSEPH J. W. SERTICH5
1Department of Anatomy, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, Pennsylvania 19131, U.S.A., kerincl@pcom.edu;
2Department of Geology, Mansoura University, Mansoura, Egypt, 35516, sallam@mans.edu.eg;
3Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, 228 Irvine Hall, Athens, Ohio 45701, U.S.A., oconnorp@ohio.edu;
4Ohio Center for Ecology and Evolutionary Studies, Irvine Hall, Ohio University, Athens, Ohio 45701, U.S.A.;
5Department of Earth Sciences, Denver Museum of Nature and Science, Denver, Colorado 80205, U.S.A., jsertich@dmns.org

ABSTRACT—We evaluate new lungfish remains from the Upper Cretaceous Quseir Formation in the Western Desert of southern Egypt. Taxa include Lavocatodus protoperoides, L. humei, L. giganteus, and Protopterus nigeriensis. We treat Lavocatodus as members of Lepidosirenidae based on the presence of a well-defined medial articular surface, in the absence of a symphysal surface of corresponding prearticular bones. Material of L. protoperoides represents the first example of an adult specimen, supporting the retention of the species as valid, and not a junior synonym of L. humei. Specimens of L. humei are the most abundant in the assemblage, and all exhibit the medial articular surface, a feature that is absent from specimens of Ceratodus; therefore, we reassign additional specimens of C. humei to Lavocatodus. New specimens of L. giganteus extend the temporal and spatial ranges of the species (the type material of L. giganteus is from Paleocene deposits of In Farghas, Mali). Finally, a new specimen of Protopterus represents the oldest record of the genus in Egypt. The prearticular is confidently assigned to Protopterus based on the presence of only three ridges on the tooth plate, a medial symphyseal suture, a coronoid process, and a shallow tooth crown plus prearticular depth. We further assign it to P. nigeriensis based on the length, width, and depth of the tooth ridges. Furthermore, the oldest Cenomanian specimens reported from the Sudan Wadi Milk Formation are assigned to P. nigeriensis, which would extend the temporal range of P. nigeriensis by roughly 14 Ma.

INTRODUCTION

Lungfishes (Dipnoi) are osteichthyan fishes with an extensive record throughout the Paleozoic and to a lesser extent during the Mesozoic and Cenozoic (Clack et al., 2011). Based on extant representatives within the Lepidosirenidae and Neoceratodontidae, lungfishes possess a high degree of cartilage in their skeletons that ossifies relatively late during development (Ahlberg and Trewin, 1994; Johanson et al., 2005; Johanson et al., 2009). This likely accounts for the fact that fossilized remains of lungfishes, especially during the Mesozoic and Cenozoic, are often restricted to the hardest elements, such as the skull roof, jaws, and isolated tooth plates. Mesozoic forms are most diverse in Gondwana, especially in the fossil record of the Australian landmass, with fewer taxa currently known from South America and Africa. Several studies conducted over the past decade have closely examined the lungfish record in South America and Africa, concentrating primarily on members of Ceratodontiformes (e.g., Churcher and de Iuliis, 2001; Churcher et al., 2006; Apesteguía et al., 2007; Soto and Perea, 2010; Cione et al., 2011; Cione and Gouric-Cavalli, 2012). These reviews suggest a strong similarity of both South American and African taxa with Australian forms. Prompted by the recovery of new lungfish remains from the Upper Cretaceous Quseir Formation (Fig. 1) in the Western Desert of southern Egypt, we evaluate the new fossils in the context of previous research on northern Africa lungfish faunas and provide additional perspectives on the Egyptian assemblage of lungfishes. These efforts are being conducted as part of the Mansoura University Vertebrate Paleontology Initiative, a collaborative network among Mansoura University, Ohio University, and the Denver Museum of Nature and Science that was established to promote field, laboratory, and museum research along with training opportunities for a range of students and researchers from Egypt and abroad.

Institutional Abbreviations—AMNH, American Museum of Natural History, New York, U.S.A.; MNHN, Muséum National d’Histoire Naturelle, Paris, France; MUVP, Mansoura University vertebrate paleontology collections, Mansoura, Egypt; TMM, Texas Memorial Museum at The University of Texas at Austin, Austin, Texas, U.S.A.; Vb, Technische Universität Berlin, Berlin, Germany.

Ensemble divisions for MNHN species utilized by Werner (1994), Martin (1995), and Gloy (1997) are also utilized here. HGO, from the West of Hoggar; HGS, from the South of Hoggar; IBC, from In Beceten of southern Niger; TGE, or from Morocco, Algeria, and/or Mali.

GEOLOGIC SETTING

Sequences of the Quseir Formation, together with the overlying Duwi and Dakhla formations, represent a Campanian through Paleocene succession exposed throughout central and southern Egypt (Klitzsch et al., 1979; Tantawy et al., 2001). Exposures of the Quseir Formation are accessible in multiple areas near both Kharga Oasis and Dakhla Oasis, Western Desert, southern Egypt (Fig. 1). The sequences include a variety of depositional environments, ranging from fluviatile and estuarine to various marine facies, most of which preserve vertebrate and
invertebrate fossils characteristic of their respective depositional settings (Klitzsch et al., 1979; Hendriks, 1984; Hermina, 1990; Klitzsch and Schandelmeier, 1990; Tantawy et al., 2001; Mahmoud, 2003; O’Connor et al., 2010).

The type section of the lower-middle Campanian Quseir Formation is located at Gebel Atshan in the Quseir area, Red Sea coast (Youssef, 1957). An additional stratigraphic section was measured near the town of Teneida in the Dakhla Oasis field area. Thirty meters of the upper part of the Quseir Formation are exposed in the region and consist of slope-forming variegated shale (purple, gray, and green) alternating with hard bands of sandstone and siltstone. Occasional thin phosphatic beds exhibiting bioturbation (e.g., burrows) are intercalated in the upper part of the sequence. Vertebrate fossils, including fishes, turtles, crocodyliforms, and dinosaurs, were collected primarily from these units, representing nearshore-marine to fluvial depositional environments (O’Connor et al., 2010). These units also preserve abundant petrified wood and the lungfish materials described herein.

MATERIALS AND METHODS

The dipnoan fossils described in this report consist mainly of partial tooth plates, although some are complete, along with additional, partial jaw elements. Material was recovered by surface collection from the localities listed in Table 1. All remains were accessioned into the Mansoura University Vertebrate Paleontology (MUVP) collections at Mansoura University, Mansoura (Nile Delta), Egypt. Comparative fossil materials from Africa examined were †Protopterus nigeriensis MNHN-F-IBC 1804 (holotype) and MNHN-F-IBC 1751. Comparative extant materials examined were †Protopterus aethiopicus UF 137272 and UF 147058 and †Protopterus annectens AMNH 55226 and TMM M-1129. A guide to tooth plate orientation is provided in Figure 2.

SYSTEMATIC PALEONTOLOGY

SARCOPTERYGII Romer, 1955
DIPNOI Müller, 1844
CERATODONTIFORMES (Berg, 1940)
Lepidosirenidae (Bonaparte, 1841)

Lavocatodus Martin, 1995

Remarks—Species of *Lavocatodus* were “left in Lepidosireniformes incertae sedis” by Otero (2011:238) because the suture of the lateral and medial bony mandibular elements were not known at that time. We have recovered a single dentition with a partially preserved prearticular preserving a well-defined symphyseal surface on the tooth plate. Herein, we consider *Lavocatodus* to be lepidosirenids, as per the redefined diagnosis of the Lepidosirenidae by Kemp (1998).

Lavocatodus protopteroides (Tabaste, 1963) ([Fig. 3](#))

Referred Material—MUVP 38, lower right tooth plate on a partially preserved right prearticular bone.

Description—Tooth plate with four preserved ridges. The mesial-most ridge is gracile and reflected anterobuccally. Ridges extend lingually from each crest and converge strongly towards the lingual apex of the tooth plate. Ridges 2 and 3 are long (~3.25 cm), curved buccoposteriorly, and taper to a sharp point. The fourth ridge is broken. There is a well-defined, 3.75-cm flat medial surface for articulation with its antimer.

Discussion—*Lavocatodus protopteroides* was previously called “Ceratodus” *protopteroides*, then later ‘Protopterus’ *protopteroides*. According to Gloy (1997:58), *L. protopteroides* is somewhat similar to, but cannot be the same as, *Lavocatodus ‘Protopterus’ humei* (Priem 1914), because in *L. humei* the second and more posterior ridges do not converge towards the articular surface. “Dieser Meinung kann nicht entsprochen werden, da bei der Familie der Ceratodontidae Anlage und Verlauf der Kämme andersartig ist (GILL 1972). Bei der vermeintlich nahverwandten Art Ceratodus humei laufen der zweite Kamm und die folgenden Kämme nicht auf die Symphyse zu. Desweiteren liegen die Kammansätze (zweiter Kamm und folgende) vor der Symphyse (TABASTE 1963; SCHAAL 1984).” This is contrary to the hypothesis that *L. protopteroides* was an extreme variation of *L. humei* (Martin, 1984) or that sensu Gloy (1997) specimens of *L. protopteroides* were actually early ontogenetic stages of *L. humei* (Werner and Gayet, 1997).

We were unable to personally observe all of the specimens to which Gloy referred. However, according to the unpublished dissertation, there is shared morphology between *Lavocatodus protopteroides* and *L. humei*, although specimens of *L. protopteroides* are much smaller (see Gloy, 1997:78, appendix 5). There were no adult-stage forms of *L. protopteroides* available in the dissertation by Gloy, nor was any consideration given regarding the maximum size of the taxon. Given the sheer size of the new specimen (MUVP 38) relative to others assigned to *L. protopteroides*, we consider MUVP 38 to represent an adult. For the purposes of this contribution, we retain the designation of *L. protopteroides* as valid, and not merely as a junior synonym of *L. humei*.

Lavocatodus humei (Priem, 1914) ([Fig. 4](#))

Description—All dentitions of *Lavocatodus humei* documented here are isolated and detached from supporting jaw

TABLE 1. Locality and specimen information

<table>
<thead>
<tr>
<th>Field no.</th>
<th>MUVP no.</th>
<th>Figure</th>
<th>Location</th>
<th>Taxon</th>
</tr>
</thead>
<tbody>
<tr>
<td>LKE 10027</td>
<td>MUVP 38</td>
<td>Figure 3</td>
<td>Baris</td>
<td>Lavocatodus protopteroides</td>
</tr>
<tr>
<td>DVP 08 47</td>
<td>MUVP 39</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>DVP 08 58</td>
<td>MUVP 40</td>
<td>Figure 4</td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>DVP 08 73B</td>
<td>MUVP 41</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>DVP 08 73C</td>
<td>MUVP 42</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>DVP 08 73D</td>
<td>MUVP 43</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>LKE 10115</td>
<td>MUVP 44</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>LKE 10125B</td>
<td>MUVP 45</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>DVP 08 25A</td>
<td>MUVP 46</td>
<td>Figure 4</td>
<td>Baris</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>DVP 08 25B</td>
<td>MUVP 47</td>
<td></td>
<td>Baris</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>LKE 10008</td>
<td>MUVP 48</td>
<td></td>
<td>Baris</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>LKE 10081</td>
<td>MUVP 49</td>
<td></td>
<td>Lavocatodus humei</td>
<td></td>
</tr>
<tr>
<td>LKE 10129B</td>
<td>MUVP 50</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>DVP 08 74</td>
<td>MUVP 51</td>
<td>Figure 5</td>
<td>Lavocatodus giganteus</td>
<td></td>
</tr>
<tr>
<td>LKE 10125A</td>
<td>MUVP 52</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus giganteus</td>
</tr>
<tr>
<td>LKE 10125B</td>
<td>MUVP 53</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus giganteus</td>
</tr>
<tr>
<td>LKE 10129A</td>
<td>MUVP 54</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus giganteus</td>
</tr>
<tr>
<td>DVP 08 73A</td>
<td>MUVP 55</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus giganteus</td>
</tr>
<tr>
<td>LKE 10014A</td>
<td>MUVP 56</td>
<td></td>
<td>Baris</td>
<td>Lavocatodus giganteus</td>
</tr>
<tr>
<td>LKE 10014B</td>
<td>MUVP 57</td>
<td>Figure 6</td>
<td>Baris</td>
<td>Protopterus nigeriensis</td>
</tr>
<tr>
<td>LKE 10093</td>
<td>MUVP 58</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>DVP 08 73B</td>
<td>MUVP 59</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>DVP 08 58</td>
<td>MUVP 60</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>LKE 10125B</td>
<td>MUVP 61</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>LKE 10125A</td>
<td>MUVP 62</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>LKE 10008</td>
<td>MUVP 63</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>LKE 10081</td>
<td>MUVP 64</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>LKE 10093</td>
<td>MUVP 65</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>DVP 08 74</td>
<td>MUVP 66</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>LKE 10125A</td>
<td>MUVP 67</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>LKE 10125B</td>
<td>MUVP 68</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>LKE 10008</td>
<td>MUVP 69</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>LKE 10081</td>
<td>MUVP 70</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>LKE 10093</td>
<td>MUVP 71</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>DVP 08 74</td>
<td>MUVP 72</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>LKE 10125A</td>
<td>MUVP 73</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>LKE 10125B</td>
<td>MUVP 74</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>LKE 10008</td>
<td>MUVP 75</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
<tr>
<td>LKE 10081</td>
<td>MUVP 76</td>
<td></td>
<td>Tineida</td>
<td>Lavocatodus humei</td>
</tr>
</tbody>
</table>

FIGURE 2. Line drawing of generalized tooth plate and orientation guide. **Abbreviation:** R1, ridge 1.

FIGURE 3. Lower right tooth plate and prearticular (MUVP 38) of *Lavocatodus protopteroides* in ventral view (left) and occlusal view (right).

FIGURE 4. Occlusal view (left) and ventral view (right) of lower right tooth plate (MUVP 41) of *Lavocatodus humei*.
elements. The basal surface of each tooth plate is marked by numerous nutrient grooves that align with the occlusal ridges. MUVP 40 is a complete upper left tooth plate (Fig. 4A). The mesial-most ridge of MUVP 40 is 1 cm long and directed buccally, not anteriorly. There are four additional ridges that appear to fan out buccoposteriorly. Ridges are furthest apart mesially and gradually get closer to one another towards the distal margin of the tooth plate. The fifth ridge is shorter than the fourth and does not extend to the apex formed by the medial and lingual margins of the tooth plate. There is wear and some pitting on the flattened lingual side of the occlusal surface, but the ridges are still well defined. The articular surface is ~2 cm in length and slightly worn. Additional upper tooth plates also exhibit the subtriangular shape of MUVP 40, but have lost either the first (mesial-most) ridge or the distal fourth and fifth ridges, or some combination of both. MUVP 46 is a complete lower right tooth plate, with five well-defined ridges (Fig. 4B). The mesial-most ridge is particularly tall compared with more distal ridges. The articular surface, relative to the mesiodistal length of the tooth plate, is shorter in this and other lower tooth plates, when compared with the relative length of the symphyseal surface in upper tooth plates. The lingual margin curves buccally such that the posterior margin is co-linear with the fifth, distal-most ridge. The first ridge is 1.5 cm long and the articular surface is 1.7 cm long (Fig. 4B). As with upper dentitions, the tendency is to break through the articular surface at the first ridge, between the third and fourth ridges, or both (supplemental imagery is available at Morphobank.org; username = 850; password = egypt).

Discussion—Lavocatodus humei is the most abundant taxon in the collection thus far and is also represented by the greatest size variability among all recovered lungfishes. It is taxonomically equivalent to specimens assigned to ‘Ceratodus’ humei by Churcher and de Juiuis (2001) in their review of the generic and specific diagnoses of specimens formally described by Priem (1914), Arambourg and Joleaud (1943), Tabaste (1963), and Martin (1984). For reasons described above, we re-assign those specimens to the genus Lavocatodus, sensu Martin (1995).

Discussion—Lavocatodus giganteus was erected as the type species of Lavocatodus by Martin (1995). In doing so, he singled out an upper tooth plate specimen (HGS 25) previously described as Propterus humei by Martin (1984). That specimen and the type specimen (TGE 4292) of L. giganteus described by Martin (1995) are from the Paleocene deposits of In Farghas, Mali. Thus, new specimens described here extend the range of this taxon. The medial articular surface is partly preserved on two upper tooth plates (MUVP 52 and MUVP 53), creating a rounded angle with the lingual surface. Unlike the convex condition in Lavocatodus humei, the lingual margin of the tooth plate in L. giganteus is linear as it moves towards the posterior edge plate. Lower tooth plates are more rectangular, rather than triangular. MUVP 56 is a lower, left tooth plate missing only its fifth (and possibly sixth) distal-most ridge(s) (Fig. 5B). All ridges are directed sharply buccoposteriorly. There is a sharp angle between the first ridge and articular surface, as well as between the articular surface and the lingual margin (Fig. 5B).

Discussion—Lavocatodus giganteus is the most abundant taxon in the collection thus far and is also represented by the greatest size variability among all recovered lungfishes. It is taxonomically equivalent to specimens assigned to ‘Ceratodus’ humei by Churcher and de Juiuis (2001) in their review of the generic and specific diagnoses of specimens formally described by Priem (1914), Arambourg and Joleaud (1943), Tabaste (1963), and Martin (1984). For reasons described above, we re-assign those specimens to the genus Lavocatodus, sensu Martin (1995).
Protopterus dosiren, running in a nearly straight line across the anterior mar-

...ect 35, characters 17 and 18) are among di-

right and left prearticulars, and a coronoid process on the

tending from their merger to the origin of ridge 1.

Ridges 2 and 3 are joined lingually and there is a single ridge ex-

creases from mesial to distal (4.5, 5.5, and 7 mm, respectively).

the third ridge is broken. The relative length of each ridge in-

tingial tubercles on the first and second ridges. The tallest part of

are tall (by about 14 million years) and easternmost representative of the

furcate, similar to the condition in IBC 1751. For these reasons,

we assign this MUVP 57 to Protopterus nigeriensis

Protopterus elongus (Murray et al., 2010). The relative length of the third and first ridges of the

prearticular tooth plate in the Coniacian-Santonian lepidosirenid

Protopterus nigeriensis (IBC 1751; paratype) from Niger is ap-

proximately 1.5 (Martin, 1997). The ridges in MUVP 57 also bi-

furcate, similar to the condition in IBC 1751. For these reasons,

we assign this MUVP 57 to P. nigeriensis, making it the youngest

(but not for members of Lepidosirenidae, a group that typically

exhibit cusps on the third distal-most ridge (Kemp, 2003). How-

ever, it is not unreasonable to presume that earlier forms of Lep-

idosirenidae, which collectively with extant forms are considered

the sister taxon to Neoceratodus, would maintain cusps for some

phase of growth on the first and second ridges. The length of

the third ridge is approximately 1.5 times longer than the first

ridge in MUVP 57, unlike in the Eocene lepidosirenid speci-

mens from Mali (Martin, 1995). The Malian form represents Pro-

topterus elongus and exhibits a third ridge that is twice the length

of the first ridge. Relative ridge length in MUVP 57 is more simi-

lar to Eocene Egyptian specimens assigned to P. elongus (Murray

et al., 2010). The relative length of the third and first ridges of the

prearticular tooth plate in the Coniacian-Santonian lepidosirenid

Protopterus nigeriensis (IBC 1751; paratype) from Niger is ap-

proximately 1.5 (Martin, 1997). The ridges in MUVP 57 also bi-

furcate, similar to the condition in IBC 1751. For these reasons,

we assign this MUVP 57 to P. nigeriensis, making it the youngest

(by about 14 million years) and easternmost representative of the

species.

Protopterus nigeriensis bears a strong resemblance to Cenoma-

nian specimens from the Sudan Wadi Milk Formation that have

been assigned to Protopterus sp. by Werner (1994; Vb-703, Vb-

706, and Vb-707), analyzed in great detail by Gloy (1997), and

mentioned briefly in Werner and Gayet (1997). We tentatively re-

assign the Sudan Wadi Milk specimens (Vb-703, Vb-706, and Vb-

707) to P. nigeriensis, based on the description by Gloy (1997).

BIOGEOGRAPHIC OBSERVATIONS

Extant members of the Lepidosirenidae are located on the conti-

nents of Africa and South America. The clade has been the sub-

ject of several studies promoting a vicariance model to account

FIGURE 6. Left prearticular and prearticular tooth plate with line drawings (MUVP 57) of Protopterus nigeriensis. A, ventral view; B, dorsal view; C, lateral view. Abbreviations: cp, coronoid process; R1–R3, ridges 1–3.
for their distribution, given their classification as primarily freshwater fishes (Myers, 1938). Extant members of Lepidosirenidae are strictly confined to freshwater due to a physiological intolerance of saline water. From what can be gleaned from the fossil record, the Mesozoic paleoenvironments with lungfish remains were predominantly freshwater, with the limited possibility of marine influence (Cavin et al., 2007). Therefore, it is logical to hypothesize that the extant members of Lepidosirenidae were established on both Africa and South America prior to the breakup of those continents, which was well underway by late Early Cretaceous (Smith et al., 1994; Hay et al., 1999). A recent molecular phylochronology analysis for extant lungfishes is consistent with this hypothesis, with an estimated divergence time of 120 Ma (165–95 Ma) for African and South American lungfishes (Heinecke et al., 2009).

Among Cretaceous lungfishes, Lepidosirenidae is confidently known from Africa and only questionably known from South America. As reported here, we can add to this record new material of Lavocatodus from the Quseir Formation. We consider Lavocatodus part of the Lepidosirenidae because the genus has a well-defined symphyleal surface on the tooth plate, as per the revised diagnosis of the clade by Kemp (1998). Lavocatodus is distributed extensively across northern Africa, as documented in previous accounts of taxa now attributed to the genus (Martin, 1995). As far as the published record, there are no accounts of Lavocatodus from South America; however, there are similarities to the Argentinian taxon Atlantoceratodus iheringi (Ameghino 1890), a taxon currently considered more closely related to Ceratodontidae and Neoceratodontidae than to Lepidosirenidae (Apesteguía et al., 2007; Cione et al., 2007). Specimens described for A. iheringi are problematic because the first, mesial-most ridge is broken off in all upper dentitions. Therefore, it is not clear if that ridge would be characteristically mesial as it is in all neoceratodontids. The four distal-most ridges are preserved, however, and they are directed buccoposteriorly. In addition, they have a low profile and are short from a true mediolingual apex (rather than a rounded mediolingual apex as in Ceratodontidae) to the buccal extent of all ridges, much like Lavocatodus giganteus (specimen MUVP 56) from this study and the type specimen described by Martin (1984, 1995). We suggest a further analysis of the specimens of A. iheringi to determine if they are synonymous with L. giganteus.

Lepidosiren also was reported in Cretaceous deposits of Laguna Umayo, Peru, by Sigé (1968, 1972) and Schulz (1971), findings that would have represented the earliest confirmed occurrence of crown clade Lepidosirenidae on South America. However, a revision of the stratigraphy at that locality reassigned the age to the Late Paleocene–Early Eocene (Sigé, 2004). Additional specimens of Lepidosiren from the Paleocene through Miocene are found mostly in western equatorial South America (Stirton, 1953; Arratia and Cione, 1996). Thus far, no fossils from eastern regions of South America are known; however, extant Lepidosiren are distributed extensively across the continent (Criswell, 2011).

By contrast, the fossil record of Protopterus in Africa is extensive, spanning a great extent of northern and central Africa (Otero, 2011). The oldest Cenomanian specimens reported from the Sudan Wadi Milk Formation, as a result of this study, are assigned to Protopterus nigeriensis. If those specimens do represent P. nigeriensis, that would extend the temporal range by ~14 million years, suggesting an origin of Protopterus in the present day southeastern Saharan region, with radiations extending both west and north through the Cretaceous.

ACKNOWLEDGMENTS

For continuing support of this project, we thank the following institutions and individuals: The Department of Geology at Mansoura University, including M. Kora, M. Abu El-Enen, H. El Atfy, K. Behzad, M. Youssef, S. Elsaeid, and I. Eldaoudi; G. Clement, W. Holloway, and P. Mattioli for photography. For access to specimens, we thank R. Arrindell and B. Brown (American Museum of Natural History), G. Clement (Muséum national d’Histoire naturelle), P. Puerto (Paleontological Museum Egido Feruglio), G. Rogier (University of Louvain), and R. Robins (University of Florida Museum of Natural History). Funding for the field work portion of this project was provided by the National Geographic Society–Waitt Foundation (W88-10), the L.S.B. Leakey Foundation to E. Seiffert, the Ohio University Heritage College of Osteopathic Medicine, and the Ohio University Office of Research and Sponsored Programs.

LITERATURE CITED

Submitted April 25, 2013; revisions received July 18, 2013; accepted August 21, 2013.
Handling editor: Matt Friedman.