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We present efficient algorithms for a special case of network design problems, the strong
connectivity problem. Given a directed graph G, the strong connectivity problem seeks a
minimum-cost strongly connected spanning subgraph of G. Our algorithms include the
primal-dual method, penalty algorithms, and drop algorithms. Primal-dual methods have
been quite successfull for developing algorithms for undirected network design problems.
However, no results are known for extending them to the directed counterparts. We apply
the primal-dual method to the strong connectivity problem, and show that the new algorithm
has an approximation guarantee of three. Our computational results over randomly created
instances show that the primal-dual is practically very efficient. We develop two improved
algorithms, penalty and drop, building on primal-dual as a subroutine.

(Networks-Graphs; Integer Programming, Heuristics; Analysis of Algorithms)

1. Introduction

We consider the following network design problem for directed networks. Given a directed
graph with nonnegative costs on the arcs, find a minimum-cost subgraph where the number
of arcs leaving set S is at least f(S) for all subsets S. Formally, given a directed graph
G = (V,E) and a requirement function f : 2V — Z, the network design problem is the

following integer program:



(IP) min Z Cee (1)

ecE
s.t. Z ze > f(S), for each S C 'V, (2)
e€dt(9)
ze € {0,1}, for each e € F, (3)

where 67 (S) denotes the set of arcs leaving S.

The following are some special cases of interest. When f(S) = 1forall) # S C V
that contain (don’t contain) a given node r the problem is that of finding a minimum-
cost rooted out(in)-branching. Edmonds (1967) showed that this problem can be solved
optimally in polynomial time. When f(S) = k for all } # S C V, the problem is that
of finding a minimum-cost k-connected subgraph. The directed Steiner tree problem is to
find the minimum-cost directed tree rooted at r that contains a subset of vertices D C V.
This problem is a network design problem where f(S) = 1if r ¢ S and SN D # @ and
f(S) = 0 otherwise. These last two problems are known to be NP-complete. In fact, the
directed Steiner tree problem contains the set-cover problem as a special case, and hence no
polynomial time algorithm can achieve an approximation better than O(logn) unless P=NP
(Raz and Safra 1997).

In the last ten years there has been significant progress in designing approximation algo-
rithms for undirected network design problems, the analog of this problem where the graph G
is undirected. General techniques have been developed for the undirected case, e.g., primal-
dual algorithms (Agrawal et al. 1995, Goemans and Williamson 1995, Williamson et al.
1995, Goemans et al. 1994, Rajagopalan and Vazirani 1999, Jain and Vazirani 1999) and
LP rounding techniques (Jain 1998).

There has been very little progress made on directed network design problems. The main
general technique used for approximating undirected network design problems, the primal-
dual method does not have a simple extension to the directed case. In this paper, we extend
the primal-dual to a special case of directed network design problems, the strong connectivity
problem. Given a directed graph G = (V, E), the problem is to find a minimum-weight
strongly connected spanning subgraph. In terms of our integer-programming formulation,
this is the special case when all subset requirements are one. We will refer to that special
integer program as ({Psc).

This problem is interesting in the following sense: though it is the most special and the

simplest case among NP-hard directed network design problems, the approximation factor
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is not better than that for the general crossing supermodular case (Melkonian and Tardos
1999). So it is natural to seek improved algorithms for this special case first.

The strong connectivity problem was first studied by Frederickson and Jaja (1981), and
an algorithm achieving an approximation factor of two was obtained. It is obtained by taking
the union of a minimum-weight in-branching and a minimum-weight out-branching, rooting
at an arbitrary node. Recall from that the branching problem can be solved optimally by
Edmonds’ (1967) algorithm. We will refer to the algorithm of Frederickson and Jaja as the
branchings algorithm.

The branchings algorithm has the shortcoming that its in-branching and out-branching
subroutines might have a “myopic view” when choosing arcs and thus omit some arcs that
have high “common” value. On the other hand, the primal-dual does not have that myopic
view. It takes a more holistic approach when choosing arcs, and thus presumably could lead
to a good algorithm for the strong connectivity problem as it does in the case of undirected
network design problems. In this paper we discuss the difficulties of extending the primal-
dual for undirected networks to the strong connectivity problem. Straightforward extensions
could lead to algorithms that do not guarantee constant approximation. However, by doing
some modifications we give a version of primal-dual that has a constant approximation
factor and performs well in practice. On average, its output is within 20% of optimum, and
it almost always delivers a better solution than does the branchings algorithm. We prove
that the primal-dual is a three-approximation algorithm. Note that the factor of three is not
known to be tight, but rather it is the result of our proof technique. In fact, in the worst-case
example we could get (given in Section 3.4) the primal-dual output is only 2—2/n times more
expensive than is the optimum. Our conjecture is that 2 — 2/n is the real approximation
factor, and computational results support this conjecture. In another example given in the
same Section 3.4, the branchings algorithm delivers a solution that is exactly twice more
expensive than the optimum.

Along with the primal-dual we present several improved algorithms for the strong con-
nectivity problem. Most of these algorithms use primal-dual as a subroutine.

Suppose a given solution to a network design problem is not optimal. Intuitively, we
might have the following two reasons for that: (1) there are some “good” arcs that are not
in the solution; (2) there are some “bad” arcs (or combinations of arcs) that for some reason
were included in the current solution. Normally both (1) and (2) are true for non-optimal

solutions. How can we fix this situation? In Section 4 we add penalties to suspiciously bad



arcs to deal with type (2) situations. In Section 5, we will give a procedure to discover
“good” arcs mentioned in (1). This procedure leads to so-called drop algorithms that were
first proposed by Zhu et al. (1999).

While it is hard to give any theoretical guarantees for most of these algorithms, the
computational results are promising for some of them.

The paper is structured as follows. We start Section 2 with a general discussion about
the primal-dual method, and how it is used to get approximation algorithms. In Section
2.2, we discuss why the technique for undirected networks does not extend easily to directed
counterparts; then we give modifications to primal-dual that allow us to get a good approx-
imation guarantee for directed networks. In Section 3, we prove the main theorem of this
paper, which states that our implementation of primal-dual for the strong connectivity prob-
lem yields a three-approximation algorithm. The penalty algorithms are covered in Section
4, and in Section 5 we discuss the drop algorithms. We speak about computational results

in Section 6.

2. Primal-Dual Algorithm

First we will present the general primal-dual technique based on Goemans and Williamson
(1995). Then we will specialize it to the strong connectivity problem and will give a perfor-

mance guarantee for the algorithm in the next section.

2.1 General Primal-Dual Technique

Consider the LP relaxation of (I Ps¢):

(LPsc) min Z Cee (4)

eckE
s.t. Z Te > 1, for each S C 'V, (5)
e€dt(S)
ze > 0, for each e € F. (6)

and its dual linear program:



(DPsc) max Z Ys (7)

Scv
s.t. Z ys < Ce, for each e € F, (8)
S:e€dt(S)
ys > 0, for each S C V. 9)

In the primal-dual method for approximation algorithms, an approximate solution to
(I Psc) and a feasible solution to the dual of LP relaxation are constructed simultaneously;
the performance guarantee is proved by comparing the values of both solutions.

Consider the complementary slackness conditions for (LPs¢) and its dual (DPsc). There
are primal complementary slackness conditions corresponding to primal variables:

ZTe>0= Z Ys = Ce (10)

S:e€dt(S)
and there are dual complementary slackness conditions corresponding to dual variables:

ys > 0= Z ze =1 (11)
e€dt(S)

The general outline of primal-dual method for approximation algorithms is given in Al-

gorithm 2.1.

Algorithm 2.1 General Primal-Dual Method for Approximation Algorithms

Initialize: dual y < 0; infeasible primal A
while there does not exist a feasible integral solution obeying primal complementary
slackness conditions do
Get direction of increase for dual (moving towards feasibility of primal)
end while
Return feasible integral solution z obeying primal complementary slackness

The primal-dual method for approximation algorithms differs from the classical primal-
dual method in that some of the complementary slackness conditions are not enforced. In
most cases the dual conditions are not enforced, and that is the approach we use in this paper;
but there are some algorithms that relax the primal conditions. Relaxing the complementary
slackness conditions is not a surprise considering that our problems are NP-hard: enforcing
both primal and dual complementary slackness conditions would lead to an optimal solution.

Though the dual complementary slackness conditions are not enforced, a main idea of the



primal-dual approximation algorithm is to keep those conditions as little violated as possible.
As we see later, a successfull realization of that idea helps to get a good approximation factor.

Now we go into detail to see how the ideas of Algorithm 2.1 are implemented for network
design problems.

Primal-dual is an iterative algorithm. It maintains a dual solution that is initially zero
and an infeasible solution A C F for (IPsc) that is initially empty. In each iteration the
algorithm adds an arc to current A until A gets feasible for (/ Ps¢). The idea is to add these
arcs in such a way that the dual solution remains feasible and the primal complementary
slackness conditions stay satisfied. The next paragraph elaborates how to achieve this.

If the current A is infeasible for (I Ps¢), then (2) is not satisfied for some subsets of
V. There is a dual variable ys corresponding to each of those subsets. The idea is to
choose a set of subsets violating (2), call it Violated(A), and increase the dual values of all
S € Violated(A) uniformly until a dual constraint gets tight. The arc corresponding to the
dual constraint is added to A (ties are broken arbitrarily). Note that this choice of the arc
ensures that the dual solution remains feasible and that primal complementary slackness
conditions are satisfied.

The above algorithm has the shortcoming that, though at any particular iteration the
edge added to A was needed for feasibility, by the time the algorithm terminates it may
no longer be necessary. These unnecessary edges increase the cost of A. To solve this
problem, the refined algorithm does reverse deletion of the redundant edges in stage 2 (after
getting an original feasible A). Note that the famous Dijkstra algorithm for the shortest-
path problem also does reverse deletion at the end to get rid of redundant arcs (actually,
Dijkstra’s algorithm can be interpreted as a special case of primal-dual algorithm). The
summary of the primal-dual for general network design problems is given in Algorithm 2.2.

To analyze the performance guarantee of this algorithm, we need the following definition.

Definition 1 A set B C E is said to be a minimal augmentation of a set A C FE if:
e AU B is feasible, and
e for any e € B, AU B — {e} is not feasible.

Let Ay be the output of the algorithm. Note that if A is the infeasible set in some
iteration, then Ay — A is a minimal augmentation of A.
Earlier we mentioned that the dual complementary slackness conditions (11) are not

enforced in primal-dual approximation algorithms but they are kept violated as little as



Algorithm 2.2 Primal-Dual

Initialize: y «— 0, A < 0, [ < 0 (/ is a counter)
while A is not feasible do
141
V « Violated(A) (a subroutine returning a set of violated subsets of V)
Increase ys uniformly for all S € V until 3 ¢; ¢ A such that Z&eleﬁ(s) Ys = Ce,
A+ AU {6[}
end while
for j < [ down to 1 do
if A— {e;} is still feasible then
A+ A— {ej}
end if
end for
Return A

possible to achieve a good approximation guarantee. What are those conditions in terms of
this particular algorithm? Note that ys > 0 means that subset S was in Violated(A) in some
iteration. Now » s+ gy Te is the number of 6 (S)-arcs in the minimal augmentation A; — A
of A (this follows from reverse deletion). Thus, (11) says that for any S € Violated(A) we
should have [67(S) N (A; — A)| = 1. We can’t hope to have this condition satisfied for NP-
hard network design problems. But if, on average, [67(S) N (A;— A)| is not a big number for
S € Violated(A), that is, if the dual complementary slackness conditions on average are not
violated much (for any solution), then it is possible to give a good approximation guarantee
for the primal-dual. Formally, this result is stated in the next theorem, which is the main
analysis tool for primal-dual approximation algorithms and is due Goemans and Williamson
(1995):

Theorem 1 Suppose for any infeasible A and any minimal augmentation B of A,
> 167(S) N B| < a|Violated(A)|. (12)
S€eViolated(A)
Then
Y ce<a-cly) <a-OPT, (13)
€€Af
where c(y) is the cost of the dual solution at the end of the algorithm, and OPT is the optimal

value of (IPsc).

Theorem 1 implies that the primal-dual is an a-approximation algorithm. The question

is how to achieve a good (small) a.



2.2 Choosing Violated Subsets for Strong Connectivity Problem

In this section, we give those details of the algorithm that are specific to the strong connec-
tivity problem.

For good performance of the algorithm, it is crucial to choose the set Violated(A) prop-
erly. For example, for the generalized Steiner tree problem (f(S) is 0 or 1 in undirected
networks) the primal-dual works the in following way. In each iteration those connected com-
ponents S C V for which f(S) =1 are included in Violated(A). Goemans and Williamson
(1995) show that this choice of Violated(A) leads to a two-approximation for the generalized
Steiner tree problem.

In the case of the strong connectivity problem, for a current infeasible solution A, the
graph (V, A) can be partitioned into a set of maximal strongly connected components. Call
those components cells. An important observation is that there are A-arcs connecting dif-
ferent cells (see Figure 1 for an example) while in the undirected case all A-arcs were within
the cells. As we can see below, this really causes difficulties. If we didn’t have A-arcs be-
tween different cells then arguments similar to the undirected case would yield the same
approximation factor of two.

So how should we choose Violated(A)? Obviously, a violated set can’t intersect with a
cell. Thus, the cells and their unions are the only candidates for being violated subsets. A
natural idea for choosing Violated(A) is to include all those cells for which (2) is violated
(i.e., there are no arcs leaving them). The example of Figure 1 shows that if Violated(A) is

chosen in this way, then using Theorem 1 cannot lead to a good approximation guarantee.

Figure 1: Example motivating our rule

In this example, the circles 1,2, ..., k4 2 are the cells; the solid-line arcs are in the current
infeasible solution A, and the dashed-line arcs form the minimal augmentation B of A. (We

will use the same conventions in all our figures).



If we defined violated sets based on the rule above, then

|Violated(A)| = 2 and ZSEViolated(A) 0t (S)NB|=k+1,
which leads to an approximation factor of O(k).

This example also suggests what would be a better way of selecting violated subsets. If
we also included those cells that don’t have A-arcs entering them, then |Violated(A)| would
go up to O(k), leading to a better (constant) ratio. But how can we define such cells as
violated subsets if they satisfy (2)? Note that if there is no arc entering a set S, then there
is no arc leaving its complement, V' — S. Thus, V — S should be defined as a violated set.
Note that if S is a cell then V' — S is the union of all the cells but S; call it the co-cell of S.
Combining these ideas, here is our rule for selecting violated sets:

e include a cell S in Violated(A) if §7(S) N A = 0;
e include a co-cell of S in Violated(A) if 6=(S) N A = .

Note that both a cell and its co-cell can be included in Violated(A). If we apply this rule
to the example above, then

[Violated(A)| = k + 3 and 3 gcvigareaca) 107 (S) N B = 2k + 2.
This gives a ratio of less than two. In the next section we show that, in general, this rule

leads to a constant approximation guarantee.

3. Approximation Guarantee for the Primal-Dual

In this section we prove that when the rule of Section 2.2 is applied, the primal-dual is a
three-approximation algorithm for the strong connectivity problem. Based on Theorem 1, it

is enough to show that

Theorem 2 For any infeasible A and any minimal augmentation B of A,
2_sieviolated(a) 0(5i) N B| < 3|Violated(A)].

The rest of this section gives the proof of Theorem 2.

First we need some definitions and notation. A cell is called a source if there are no
A-arcs entering it (and so its co-cell is included in Violated(A)). A cell is called a sink if
there are no A-arcs leaving it (and so it is included in Violated(A)). In the example of
Figure 2, cells 2, 6, 7, and 11 are sources, cells 3, 4, 5, 9, and 10 are sinks, and cells 1 and 8

are both sources and sinks.



A collection of arcs entering the same sink is called an in-comb; a collection of arcs leaving
the same source is called an out-comb. In both cases, the number of arcs can also be zero.
An infeasible set A C F is called a comb-forest if it is a collection of in-combs and out-combs
that don’t have any common vertices. In the example below, {2 : 2 — 3, 4,5} is an out-comb
of size 3, {9 : 6,7 — 9} is an in-comb of size 2, and {1 : } is both an in-comb and an

out-comb of size 0.

s 8 1

Figure 2: Comb Forest

In all our figures, the arcs of infeasible A will be solid and the arcs of its minimal
augmentation will be dashed. Nodes in figures represent the cells of current A.
We will frequently compare g cyjpareaa) |07 (Si) N B| with [Violated(A)| in the proof.
So let us introduce shortcuts for those expressions:
Af = ZSiGViolated(A) 07 (Si) N Bl ; pa = |Violated(A)|.

Outline of the proof

The proof is by induction on |V].

In Section 3.1, the theorem is proved for the cases of directed cycles and so-called digon-
trees (defined in Section 3.1). These two cases constitute the induction base. If we are in
neither of these two cases, an induction step is done by reducing the size of the network. We
give the induction step in Section 3.2. Throughout the proof it is assumed that the infeasible
set. A has a special structure of a comb-forest as defined above. In Section 3.3, we show why
this assumption can be made by reducing any A to a comb-forest. In Section 3.4, we give

bad case examples for the primal-dual and branchings algorithms.

3.1 Induction Base: Cases of Digon-Trees and Directed Cycles

A digon is a pair of opposite arcs. If a digraph consists only of digons, and ignoring the
directions will make it an undirected tree, then the digraph will be called digon-tree. An
example of a digon-tree is given in Figure 3.

In this section, we show that the theorem statement is true for digon-trees and directed

cycles. Later, these cases serve as the induction base for more general network structures.
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Figure 3: Example of Digon Tree

The Case of Digon-Trees

Lemma 1 Suppose A is an infeasible set and B is a minimal augmentation of A such that
A is a comb-forest and AU B s a digon-tree. Then
> sievioate(ay 10(Si) N Bl < 2.5[Violated(A)|.

Proof is by induction on |V|. Namely, we consider several cases, and in each of these cases
a given digon-tree is reduced to a smaller one; then we show that if the statement of the
lemma is true for the smaller network, then it is also true for the bigger one.

Call a node v of a tree a pre-leaf if, after eliminating all the leaves, v becomes a leaf. Any
non-trivial tree has a pre-leaf.

Suppose v is a pre-leaf of AU B. Consider the cases:

e (Case 1: There is a leaf u of v that is both a source and a sink.

Create a reduced instance (A', B') by deleting u and its incident arcs.

@ of G

Figure 4: Case 1 Example

Then py = pa — 2. Each of the cell u and its co-cell will contribute one less in AZ,
than in AB; each of the cell v and its co-cell may contribute the same or one less in Aﬁf
than in A% (this depends on v being a source or a sink or both). Thus, A% > A% — 4.

So if the lemma is true for A’ then it is also true for A.

11



e Case 2: We are not in case 1, and v has at least two leaf-neighbors.

Without loss of generality, assume that v is a source and all its leaf-neighbors are sinks

(recall that we assume that A is a comb-forest).

Figure 5: Case 2 Example

Get a reduced instance A’, B’ by deleting one of the leaf-neighbors and the arcs incident
to it. The deleted leaf-neighbor will contribute one less in A%, than in A%; the co-cell
of v will contribute one less in A%, than in A%. So if the lemma statement is true for

A’ then it is also true for A.

o Case 3: We are not in case 1, and v has exactly one leaf-neighbor u.

Without loss of generality assume that v is a source, and v — wu is the only A-arc
incident to it (see Figure 6, with u; as u and v; as v). Otherwise, we could apply the

technique of case 2.

Get a reduced instance A’, B’ by deleting u,v and the arcs incident to them. Then
pa = pa—2. The cell u will contribute one less in A% than in A%; the co-cell of v will
contribute two less in A%, than in A%: each of the cell w and its co-cell may contribute
the same or one less in A%, than in A% (this depends on w being a source or a sink or

both). Thus, A% > A —5. So if the lemma is true for A’ then it is also true for A. OJ

Note that in case 3 we have the worst estimate of «, which is 2.5. Consider the following

G

Figure 6: Example with oo = 2.5

complete example (see Figure 6).
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Here, A = 5k and p4 = 2k + 2. As k increases, o asymptotically goes to 2.5. Thus, the

value 2.5 for « is the best for which we can hope.

The Case of Directed Cycles
Another induction base is the case when A U B is a directed cycle.

Lemma 2 Suppose A is an infeasible set and B is a minimal augmentation of A such that
A s a comb-forest and AU B s a directed cycle. Then
> sieViolated(a) 10(Si) N B[ = [Violated(A)|.

Proof:

Figure 7: AU B is a Cycle

In this case, there is exactly one B-arc entering (leaving) each source (sink); thus, A% =

P4, and the lemma is true. [

3.2 Induction Step: Reducing the Size of the Network

In this section we show that if A U B is neither a digon-tree nor a directed cycle, then we
can apply an induction step by reducing the size of the network. During this reduction, we
lose at most a factor of three in the approximation.

The idea of the reduction is the following. Suppose there is a directed cycle C C AU B
such that |C| > 3 and C' # AU B. We reduce the size of the network by contracting C to a
two-node structure. Here are the rules of reducing the original (V, A, B) to (V', A’, B) (see
also Figures 8 and 9):

o V' =V U{u,v} — {C-nodes}. In other words, we remove the nodes that are on cycle C
and instead add two new nodes v and v.

olfz »yec A x ¢ C,yeC,then I3z — u € A'. In other words, if an A-arc enters C, then
it enters v in A’. Note that some of these arcs might merge.

olfz oycAzeC,y¢C,thendv—ye A In other words, if an A-arc leaves C, then

it leaves v in A’. Note that some of these arcs might merge.
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e B-arcs entering C, enter v in B’. There are no mergers here; otherwise, one of the original
B-arcs would be redundant.
e B-arcs leaving C| leave u in B’. There are no mergers here.
e We consider two cases for adding arcs © — v and v — u.

Case 1: If there are A-arcs both entering and leaving C' then u — v and v — u are added
to B’ (see Figure 8).

Case 2: If no A-arc enters C or no A-arc leaves C' then v — u is added to A’ and u — v

is added to B’ (see Figure 9).

X /—:/'Xs X @/'X
K1 \ - 5
% ‘/\&*x4
/‘ T reduce to /C@j/ ~-X,

X, X )

X,

Figure 8: Cycle Reduction (Example of Case 1)

X

X / |
" ///)*x4
/“*\\\ reduce to
X, X

Figure 9: Cycle Reduction (Example of Case 2)

B’ is an augmentation of A’. Suppose nodes y and z in (V, A U B) were connected with
a path that went through cycle C. In (V', A’U B'), y and z will be connected with the same
path, but this time instead of traveling on C, it might go through cycle v — v — w.

B’ might be not a minimal augmentation of A’. The only redundant arcs in B’ could be
u — v and v — u. Assume the opposite: there is another redundant arc s — ¢t € B’, that is,
B' — {s — t} is still an augmentation of A’. Then there is a path P = s ~» ¢t in A’ U B’ such
that s — ¢t ¢ P. But when some portion of cycle C is added to P (if necessary), the modified
path would connect s to ¢ also in AU B. Thus, s — t should have been redundant for B (if
one of s and t is a newly-added node then the redundant arc is not s — ¢ itself but rather

its corresponding arc in B). This contradicts the fact that B was a minimal augmentation
of A.
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Based on the arguments above, B’ (maybe after deleting arcs u — v and v — u) is a
minimal augmentation of A’.

Let pc be the number of sources and sinks on cycle C. There is exactly one B N C-arc
entering each source on C; there is exactly one B N C-arc leaving each sink on C. Thus, A%
is reduced exactly by pc as the result of eliminating B N C-arcs. For any other B-arc we
have a corresponding B’-arc in the reduced instance. Based on these observations,

o pa =pa—pc+2 (cycle C was eliminated; the newly-added node u is a sink
and not a source; the newly-added node v is a source and not a sink).

o AB > AB —pc (" >" because could have or not v — v and v — u in B').

¢ Also, by induction A% < 3p4. Thus,

AR < AE + pc < 3pa + pc < 3(pa— pc +2) + pc = 3pa + (6 — 2pc) < 3pa
The last inequality is true because |C| > 3 and so C has at least 3 sources and sinks on it
(considering that A is a comb-forest). Thus, the statement of Theorem 2 is true by induction.

Note that if |C| > 4 then pc > 4, and the same analysis would yield a factor of two.
Thus, the worst case happens when |C| = 3 and we cannot reduce that cycle without losing
a factor of three.

Yet we don’t have a complete example where the value of a from Theorem 1 is exactly
or asymptotically three (like the example of Figure 6 for « = 2.5). Thus, « has a room to be
improved from three but the best we can hope is 2.5. But even 2.5 is the best hope only when
we are using the proof technique, which is based on Theorem 1. In reality, the algorithm
might have a better approximation guarantee. In Section 3.4 we give an example where the
algorithm output is 2 — 2/n times costlier than the optimum. This is the worst-case example

that we have at this point, and so 2 — 2/n is the best hope for the approximation factor.

3.3 Reducing Infeasible Set A to Comb Forest

Throughout Sections 3.1 and 3.2 (the proof by induction) we assumed that the infeasible
set A is a comb-forest. In this Section we get a comb-forest from any A using the following

three reduction techniques:

Reduction Technique 1:

Feature of A: Removing an arc a € A doesn’t change sources and sinks (see Figure 10).
Then define the reduced instance by A" = A — {a}.
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a reduceto T

Figure 10: Example of Technique 1

If B is a minimal augmentation of A then B’ = BU{a} is an augmentation of A’, maybe
not a minimal one. The only arc that can be redundant in B’ is a.

Assume the opposite: there is another redundant arc v — v € B’, that is, B'—{u — v} is
still an augmentation of A’. Then there is a path P = u ~> v in A’U B’ such that u — v & P.
But P is totally in AU B too. Thus, u — v € B should have been redundant for B either.
This contradicts the fact that B was a minimal augmentation of A.

Based on the arguments above, either B' = B or B' = BU{a} is a minimal augmentation
of A'. In either case, A% = AZ and pa = p4. So if the theorem is true for A’ then it is also

true for A. Thus, A can be reduced to A'.

Reduction Technique 2:

Feature of A: There is a cell u that is neither a source nor a sink, and the number of

A-arcs incident to u is at least 3 (see Figure 11).

u u
>/\W reduce to EW
pE————————
X X

Figure 11: Example of Technique 2

Without loss of generality, consider the case when at least two arcs enter u. Suppose
x — u is one of them. Since u is not a sink then there is a path P = u ~» w € A such that
w is a sink. Create a reduced instance the following way:

A'=AUu{zr - w}—{z — u}.

If B is a minimal augmentation of A then B’ = B U {z — u} is an augmentation of
A', maybe not a minimal one. The only arc that can be redundant in B’ is x — u. The
arguments for this are the same as those for the similar situation of technique 1.

Thus, either B’ = B or B' = BU {z — u} is a minimal augmentation of A’. In either

case, AZ = Aﬁf and pa = pa. So if the theorem is true for A’ then it is also true for A.
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Thus, A can be reduced to A'.

Reduction Technique 3:

Feature of A: For a cell u, there is exactly one A-arc v — u entering u and exactly one

A-arc u — w leaving u (see Figure 12).

/ reduce to

Figure 12: Example of Technique 3

Create the reduced instance by taking a shortcut from v to w, namely, by defining
Vi=V —{u}and A= AU{v > w} — {v = u,u - w}.

Suppose B is a minimal augmentation of A. First create an augmentation Bof A’ (which
might be not minimal yet) by changing the arcs entering or leaving u:

eifz »u€ Bthenz —we B

eifu—yecBthenv—yecB

o if z — u,u — y € B then £ — y € B (note that w and v can also be considered as
and y respectively).

Note that we didn’t eliminate any path connecting two nodes; we merely took a shortcut
wherever node u was on our way. Thus, B U A’ is strongly connected, and B is really an
augmentation of A’ but might be not a minimal one. Let D be the set of newly-added B-arcs.
The only arcs in B that might be redundant are those from D. But we have the following

important observation:

Lemma 3 Suppose B' C B is a minimal augmentation of A'. If x is a sink of A and
x—>u€ Bthendxz —y € B ND, ie., at least one newly-added arc leaving = is in B'.
Similarly, If y is a source of A and u — y € B then 3 x — y € B'N D, i.e., at least one

newly-added arc entering vy is in B'.

Proof: We will prove only the first part: similar arguments apply to the second part.

Suppose the statement is not true, i.e., no newly-added arc leaves = in B’. There is some
path going from z to v in A’ U B’. Since there is no x — y € B’ N D, the same path could
be used as a sub-path to reach from x to u in AU B without using the arc £ — u. Thus, B

is not a minimal augmentation of A, which is a contradiction.
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Note that in the special case when © = w and w — u € B, there is an arc u — y € B. If
we assume the opposite, then there would be a path P from w to v in A U B without using
w — u; PU{v — u} would be a path from w to u in AU B without using w — u; and thus
w — u would be redundant in B. And if there is an arc © — y € B then the arguments of

the general case also apply here. [

Lemma 3 implies that if B’ C B is a minimal augmentation of A’ then A% > A%. On
the other hand, pa = pa. So if the theorem is true for A’ then it is also true for A. Thus,
A can be reduced to A'.

After applying techniques 1-3 several times we can reduce any infeasible set A to a comb-
forest. Techniques 2-3 provide that, in the reduced instance, there is no node that is neither
a source nor a sink. And technique 1 eliminates an arc if it doesn’t change the sources and
sinks.

Note that the reduction techniques of this section would work not only for o = 3 but for

any other approximation factor.

3.4 Bad Case Examples

At the end of Section 3.2 it was mentioned that we don’t have a tight example for our primal-
dual algorithm. That is, we don’t have an instance of the strong connectivity problem for
which the algorithm returns a solution three times more expensive than the optimum. So
how bad can the algorithm be? In Figure 13 we give a pathological example for which the

algorithm output is 2 — 2/n times costlier than the optimum:

1+e

Figure 13: Pathologically Bad Example for the Primal-Dual

In this example, the numbers on the arcs are the costs, and € is a very small positive
number. When applying the primal-dual to this instance, all the arcs with cost one will be

saturated first. Thus, the algorithm’s output will consist of all the arcs incident to node zero
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with total cost 2k. On the other hand, it is easy to see that the optimal solution to this
instance is the cycle 0 1 -2 — .- > k—1 — k — 0 with total cost 2+ (k—1)(1+¢€) =
k+ 1+ (k—1)e. So the approximation ratio for this instance is < 2k/(k +1) = 2 — 2/n.
This ratio tends to two as the problem size increases. This is the worst example for the
performance of the primal-dual we could get theoretically. Our conjecture is that the primal-
dual for the strong connectivity problem is really a 2 — 2/n-approximation algorithm. Our
computational results (see Section 6) also support this conjecture.

Note that the output of the branchings algorithm for the example of Figure 13 is the
same as the output of the primal-dual. However, this example was not the worst case for

the branchings algorithm. Consider the pathological example of Figure 14.

Figure 14: Pathologically Bad Example for the Branchings Algorithm

Again € is a very small positive number. If node r is chosen as root, then the optimal
in-branching is {u — r,v — r} and the optimal out-branching is {r — u,r — v}. The
total cost of the output of the branchings algorithm is two. On the other hand, the optimal
solution is the cycle r — v — u — r with total cost 1 + ¢. The approximation ratio
asymptotically tends to two as € goes to zero even though the problem size remains the
same.

Note that the primal-dual returns the optimal solution for this example. It first includes
all zero-cost arcs in the solution, then increases simultaneously the dual values of two violated
subsets: S} = {u} and Sy = {v}. In the result, v — u gets saturated and is the last arc that

is included in the solution. After reverse deletion, we just get the optimal solution.

4. Penalty Algorithms

The penalty algorithm discussed in this section uses the idea of adding penalty functions
to arc costs to improve the performance of the primal-dual algorithm. First we give some
motivation for why the idea of penalty functions makes sense for our problem. Then we

discuss a classical example of using penalty functions in the traveling salesman problem
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(Held and Karp 1970). Finally, we give the penalty algorithm for the strong connectivity

problem.

4.1 Why Penalize?

Recall the worst-case example we have in Figure 13. In this example, the output of the
primal-dual algorithm is twice as expensive as the optimal solution. The reason is that the
primal-dual solution has “too many arcs:”

e all the arcs in the original network have roughly the same cost;

e the optimal solution is a cycle and thus contains the minimum possible number of arcs;

e the primal-dual solution, on the other hand, contains almost twice as many arcs as the
optimal solution.

So having many arcs in the solution might be the reason for getting a bad solution. In
order to overcome this problem we need to characterize the number of arcs in terms of node
degrees. Note that the number of arcs in a directed network is:

(1/2) 3",y (indegree(u) + outdegree(u)).

In any solution to the strong connectivity problem, both the indegree and the outdegree of
any node should be at least one. In case of a cycle solution, the indegree and the outdegree are
exactly one. If either the indegree or the outdegree of a node is going up, this automatically
increases the number of arcs in the solution. Say, in the example of Figure 13, the reason for
having too many arcs is that node zero has indegree and outdegree both equal to n—1 in the
primal-dual solution. So to decrease the number of arcs, we shall try somehow to prevent a
node getting too many arcs incident to it. The technique that allows us to achieve that is

adding penalty functions to the arc costs.

Note that this problem of having “too many arcs” might arise in almost all network-
connectivity problems, not only for directed but also for undirected graphs. An exception is

the minimum spanning tree problem where any solution has exactly |V| — 1 arcs.

Adding penalty functions to costs is one of the most commonly-used techniques in opti-
mization. One of the first applications, which is also related to our problem, is due to Held
and Karp (1970). They applied the technique to the traveling salesman problem (TSP). In
the TSP, it is required to find a minimum-cost tour (i.e., a cycle passing through each vertex
exactly once). While in the strong connectivity problem it is just the assumption of our

heuristic that a solution with low-degree nodes is a good one, in the TSP, nodes should be
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low-degree in any feasible solution. Namely, any node is required to have degree two in any
feasible solution to the symmetric (undirected) TSP, and any node is required to have both
indegree and outdegree 1 in any feasible solution to the asymmetric (directed) TSP. Due to
this restriction on node degrees, a transformation of arc costs ¢;; < ¢;; + m; + m; by adding
penalties 7’s to the nodes leaves the TSP invariant, and this is the theoretical basis of the

Held-Karp algorithm.

4.2 Penalty Algorithm for the Strong Connectivity Problem

In our penalty algorithm, the idea of using penalty functions is similar to that used by Held
and Karp: the arcs incident to high-degree nodes are penalized more. Our main differences
from the Held-Karp scheme are the following: (i) in the Held-Karp scheme, the solution
costwise is improved in each iteration, but the current solution in each iteration (except
maybe the last) is infeasible, and there is no guarantee that the algorithm will find a feasible
solution. (ii) in our algorithm, the current solution is feasible in all iterations but there is
no guaranteed way for changing the arc costs such that the current suboptimal solution is
improved. This means that our algorithm is a local-search heuristic: in each iteration, we
try to get a better solution in the neighborhood of the current solution, but there is no
guarantee that we can do that.

The schematic outline of our penalty algorithm for the strong connectivity problem is
given in Algorithm 4.1.

Our penalty algorithm is an iterative algorithm that uses the primal-dual as a subroutine.
At the beginning of each iteration, we have a current best solution that was obtained by
applying the primal-dual with respect to current arc costs. Suppose in the current best
solution, node v has indegree(v) and outdegree(v). Then we get a modified instance by
adding penalty functions to arc costs in the following way. For arc ¢+ — 7, the modified cost
is:

cij + A([outdegree(i) — 1] + [indegree(j) — 1])

That is, if the tail 2 has more than one outgoing arc in the solution, then in the modified
instance we increase the costs of all outgoing arcs by some factor A of outdegree(i) — 1.
Similarly, if the head j has more than one incoming arc in the solution, then in the modified
instance we increase the costs of all incoming arcs by a factor A of indegree(i) — 1.

We apply the primal-dual to this instance with modified costs. If it returns a better

solution in terms of original costs then we update the current best solution and start a new
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iteration. Otherwise, the algorithm stops and returns the current best solution.

Algorithm 4.1 Penalty Algorithm

Initialize: COST, < 0; k < 1 (k is a counter);
Ay < PrimalDual(c;j); COST; < cost of Ay;
while £k =1 or COST, < COSTy_; do
k< k+1
outd(v) < outdegree of node v in Ay _1; ind(v) < indegree of node v in Ay i;
cij < cij + A([outd(z) — 1] + [ind(j) — 1])  (for some A > 0);
Ay < PrimalDual(c;j); COST) < cost of Ay in terms of original arc costs;
end while
return A,_;

Note that A might be changed several times in the same iteration until a better solution is
found. Namely, if the current A doesn’t change the solution, then we increase A, supposing
that a larger perturbation could improve the solution; if the solution gets worse then we
decrease A, supposing that a better value lies somewhere between 0 and the current A. Of
course, we might not be able to improve the current solution at all. Choosing an initial A, the
strategy of changing it and the stopping criteria for the algorithm are open implementation
issues.

Since the penalty algorithm can only improve the solution of the primal-dual then it also
has the approximation factor of three. While it is hard to improve this factor theoretically,
computational results in Section 6 show that the penalty algorithm can considerably improve

the performance of the primal-dual algorithm in practice.

5. Drop Algorithms

Suppose a given solution to a network design problem is not optimal. As we mentioned in
Section 1, there are two natural ways to improve it. If the solution is not optimal then we
might have the following two reasons for that: (1) there are some “good” arcs that are not
in the solution; (2) there are some “bad” arcs (or combinations of arcs) that for some reason
were included in the current solution. Normally, both (1) and (2) are true for non-optimal
solutions. How can we fix this situation? In Section 4 we added penalties to suspiciously
bad arcs to deal with type (2) situations. In this section, we will give a procedure to discover

“good” arcs mentioned in (1). This procedure leads to so-called drop algorithms.
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The drop algorithm for network design problems was proposed by Zhu et al. (1999).
For the strong connectivity problem, it first runs the branchings algorithm to get an initial
solution, and then does a series of local improvements to get a better solution.

We will first present Zhu’s algorithm for the branchings algorithm and then extend it to

the primal-dual case.

5.1 Intuition Behind Drop Algorithms

We will give some intuition behind drop algorithms in the context of the branchings algo-
rithm. But the main ideas of this analysis also apply to the primal-dual case.

Let’s reconsider the example from Section 3.4 given in Figure 15.

Figure 15: Pathologically Bad Example for the Branchings Algorithm

Recall that this was a worst-case example for the branchings algorithm. Arc v — u
loses the competition to arc » — u in the out-branching algorithm and to arc v — r in the
in-branching algorithm, in both cases just by a little, namely by e. But overall, v — u is a
very valuable arc because while r — u is useful only for out-branching and v — r is useful
only for in-branching, v — u can be used for both and yield overall a much cheaper solution.

Thus, there are some arcs with a “hidden” value that are “ignored” by the branchings
algorithm. What is the numerical procedure that will allow us to fix the situation by including
these valuable arcs in the solution?

Note that if we decrease the cost of v — u just a little, from 1 +¢ to 1 — ¢, then v — u
will be included in both in-branching and out-branching, and the cost of the solution will
decrease dramatically, from 2 to 1 — e. Thus, some kind of “sensitivity analysis” could help

us find those hidden valuable arcs.
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5.2 Zhu’s Drop Algorithm

In Zhu’s algorithm, the sensitivity analysis is done by computing the following number for

each arc e:
(¢(B1) + ¢(Bo)) — (c¢(By) + ¢(Bp))
c(e) ’

where ¢(B}) and ¢(By,) are the minimum-cost in-branching and out-branching if the cost of

drop(e) = (14)

e is dropped to 0.

The algorithm is iterative. In each iteration it determines the most important arc as the
one with the highest drop value (as defined in (14)) and drops its cost to zero. The algorithm
terminates when the cost of the branchings output gets to zero. This final output consists of
arcs that were chosen as most valuable arcs in some iterations of the algorithm. The outline

of this procedure is given in Algorithm 5.1.

Algorithm 5.1 Branchings-Drop Algorithm

Pick an arbitrary root node r
while ¢(B;) + ¢(Bo) > 0 do
Let e* be an arc with maximum drop
Set c(e*) =0
end while
Compute 0-cost in-/out branchings rooted at r
return union of edges in the branchings

In Section 5.1 we gave some intuition why the drop algorithm is likely to improve the
solution of the branchings algorithm. Zhu et al. (1999) give a theoretical guarantee that

drop algorithm’s output can’t be worse than the output of the branchings algorithm.
Lemma 4 Branchings-drop is a two-approximation algorithm.

Proof: Let D = {ey, ey, ..., e} be the set of those arcs whose costs are dropped to zero
during the algorithm (the cost of e; is dropped to zero in iteration 7). Then we have the

following chain of inequalities and equalities:

cost(Drop) < Zc(e) < ZdTOp(e)c(e) _ Z (ci(B1) + ci(Bo)) — (ci(Bj) + ci(Bp))

e€D ecD i=1 c(ei)
= Z(ci(BI) +¢i(Bo)) — (¢i(By) + ¢i(By)) = cost(Branchings) (15)

=1

c(e;)
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Here for each e € D, drop(e) is the drop value of e in the iteration when its cost was
dropped to 0.

The first inequality is true because the output of the drop algorithm consists of D-arcs
(plus, maybe some arcs which had zero cost originally). The second inequality follows from
the fact that the largest drop value in each iteration is at least one. Really, in each iteration
the output of the branchings algorithm has at least one arc with non-zero cost; for that arc
the drop value is clearly at least one. The first equality follows from the definition of the
drop value. The last equality is true because ¢;1(By) + ¢;41(Bo) = ¢;(B}) + ¢i(Bj,) for each
i €1,....k—1, ¢;(Br) + ¢1(Bo) = cost(Branchings), and cx(B}) + cx(Bj) = 0.

Since the branchings algorithm is a two-approximation algorithm, (15) implies that the

drop algorithm also has approximation guarantee of two. [

5.3 Extension of the Drop Algorithm to Primal-Dual

In Section 5.1 we discussed why the “cost-dropping” procedure might improve the solution of
the branchings algorithm. Would a similar procedure improve the solution of the primal-dual
algorithm? For the branchings algorithm, we argued that in-branching and out-branching
might have a “myopic view” when choosing arcs and thus omit some arcs that have high
“common” value. The primal-dual algorithm does not have that myopic view; it takes more
holistic approach when choosing arcs. But it turns out that in this case too, “sensitivity
analysis” might discover some valuable arcs that were wrongly “ignored” by primal-dual.
Reconsider the example of Figure 13 from Section 3.4 (see Figure 16) to illustrate the

potential benefit of applying the sensitivity analysis for the primal-dual case.

1+e

Figure 16: Pathologically Bad Example for the Primal-Dual

This was the worst-case example for the performance of primal-dual that we could get
theoretically. Recall that the primal-dual output consists of all the arcs with cost one. Let’s

do some sensitivity analysis here. If we decrease the cost of arc 1 — 2 by 2¢, from 1 + € to
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1 — ¢, then the primal-dual first will include 1 — 2 then 0 -+ 1, 2 — 0 and 0 — %, + — 0 for
alli € 3,..., k. In the result the cost of the solution will go down by 2 — (1 —¢€) = 1+e¢. the
same kind of improvement can be achieved by decreasing the cost of any arc with cost 1+ €.
On the other hand, making any arc with cost one cheaper by ¢ will improve the solution
just by the same €. Thus, the sensitivity analysis implies that the arcs with cost 1 4 € that
were ignored by primal-dual have hidden values. So the cost-dropping procedures have the
potential of improving the solution of primal-dual too.

Let’s define the drop value of any arc e for primal-dual the same way we did for the

branchings algorithm:
¢(PD) — ¢(PD')
c(e) ’

where ¢(PD') is the cost of the primal-dual output if the cost of arc e is dropped to 0.

PDdrop(e) = (16)

The drop algorithm for primal-dual is given in Algorithm 5.2.

Algorithm 5.2 Primal-Dual Drop Algorithm

while ¢(PD) > 0 and J e s.t. drop(e) > 1 do
Let e* be an arc with maximum drop
Set c(e*) =0
end while
return union of edges in 0-cost output of primal-dual

Lemma 5 Primal-dual-drop is a three-approximation algorithm.

Proof: The proof is similar to that of Lemma 4. We still have (15) but this time for
primal-dual, and it proves that the solution of primal-dual-drop can’t be worse than the
solution of primal-dual.

The only difference is that in this algorithm we explicitly check that the maximum drop
value is at least one. Recall that in branchings-drop there was no need for that since the
positive-cost solution implied that there is an arc with drop value at least 1. Our conjecture
is that it is true also for primal-dual-drop and our computational results support this con-
jecture; but we could not prove it theoretically because the situation here is not as simple
as in the case of branchings-drop. [

Our computational results show that branchings-drop and primal-dual-drop significantly
improve the performance of the original branchings and primal-dual algorithms correspond-

ingly. The results of primal-dual-drop are especially promising (see Section 6).
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6. Computational Results

In order to evaluate the practicality and the relative performance of our algorithms, we
have implemented several versions of them. The implemented algorithms are the branch-
ings algorithm, the primal-dual algorithm, the penalty algorithm, and the drop algorithms
(branchings and primal-dual versions). All implementations are for the case of the strong
connectivity problem.

Below we discuss how the algorithms were implemented, and the sets of problems on

which they were tested. Then we analyze the computational results.

6.1 Implementation Environment

Our goal is to consider 1) the performance of these algorithms relative to the optimal solution
in order the compare them with each other, and 2) speed of execution. To achieve the goal,
we have chosen to use a programming environment that provides maximum possible speed
and good memory management for the algorithms. We have used C as our implementation
environment. Adjacency lists are used for graph structures.

The integer programs were solved with CPLEX 6.6.1. We used a modified version of the
mipex2.c file of CPLEX to call the MIP solver within our main C' code. All experiments

were performed on a conventional Sun UltraSparc workstation.

6.2 Problem Instances

There are, to our knowledge, no libraries of public instances for the strong connectivity
problem, so we have constructed our own testbed of instances from other sources. We have
generated random instances and also have adapted some of the instances from a library of
public instances for the asymmetric traveling salesman problem (ATSP) to our problem. We
put the randomly-generated instances into different categories based on their size and cost
type.
Randomly-Generated Instances: Problem Sizes.

We distinguish two sizes of networks:

1) Instances for which we could find optimal solutions. We could find optimal solutions
for networks with up to 50 nodes; we will refer to these networks as “small” networks. The
basis for comparison of the algorithms in this case is naturally the optimal cost.

2) Instances for which we could not find an optimal solution. We will refer to these
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networks as “large” networks. The number of nodes in our large networks are 100, 500, and

1000. What is the basis of comparison in this case?
comparison basis for "small networks"

lDDf OETLP QPT|PD|? Cost

N~ U

comparison basis for "large networks'

Figure 17: Cost Axis

Consider the cost axis of Figure 17. Here, Dy and Py are the costs of the dual and primal
outputs of the primal-dual algorithm. OPTyp is the optimal cost of our problem (the integer
program), and O PTpp is the optimal cost of the LP-relaxation of the integer program. Since
we always have Dy < OPTrp < OPTip < Py, Dy is a lower bound for OPT;p, and we will
use Dy as a basis for comparison of the algorithms for large networks. Note that OPTyp is
an even better lower bound, but we couldn’t use it as a comparison basis because CPLEX
had memory problems when setting up LPs for large problems.

Randomly-Generated Instances: Cost Types.

The costs of arcs were chosen uniformly at random in some range [a,b]. We distinguish
three types of problems based on the choice of cost.

1) Costs don’t obey the triangle inequality. In this case a = 0; b is 10 for small problems,
and 50 or 100 for large problems.

2) The triangle inequality for the costs, ¢y, < Cyy + Cyo is achieved by narrowing the cost
range to [b/2,b]. b is chosen the same way as in case 1.

Computational results show that making the coefficient of variation (that is, (standard
deviation)/mean ) of arc costs smaller as in case 2 really makes a difference.

3) The triangle inequality is achieved by first generating random costs, then assigning
the shortest-path distances as arc costs.

Randomly-Generated Instances: Graph Densities.

Most of our problem instances are complete graphs. However, to find out how the graph
density affects the performance of the algorithms, we have also run experiments on sparse
graphs.

Instances Adapted from the ATSP Library
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TSPLIB (2003) is a well-known public library that contains instances for a variety of
routing problems, including the asymmetric traveling-salesman problem (ATSP). The in-
stances for the ATSP fit our problem since they give data for real-life directed networks.
Some of the instances are rather large, so we use the above-mentioned lower bound when

comparing the performance of the algorithms for these instances.

6.3 Results of Experiments

The following five algorithms were tested: branchings, primal-dual, penalty, branchings-drop
and primal-dual-drop. For each of the above-mentioned cases, the algorithms were tested
on samples of several problem instances. For the randomly-generated instances, the sample
sizes vary from 100 problems for small networks to five problems for networks with 1000
nodes. Unless specified otherwise, the results are given for complete graph instances.
Small Randomly-Generated Instances

We got the optimal solutions for all small instances by solving the corresponding inte-
ger programs. Table 1 gives average percent cost deviations from optimum for the above-
mentioned five algorithms. The first number in each cell is for case 1 costs (without the
triangle inequality), the second number is for case 2 costs (narrowed cost range), and the
third number is for case 3 costs (shortest path distances). Average running times (in seconds)

for the same set of instances are summarized in Table 2.

Table 1: Average Deviations from Optimum
Branch PrDual Penalty BrDrop PrDDrop
10 nodes 11/22.8/10.9 4.2/16.8/3.5 1.01/6.7/1.2 2.13/4/25  0.1/0.65/0.1
15 nodes 12/27.6/12 3.9/17.5/3.6  1.6/8.1/2  2.8/4.5/3.2 0.27/1.1/0.15
20 nodes  11/25.6/8.8 3.8/16.8/3.3 1.9/7.9/1.4 4.2/4.9/2.7 0.04/1.5/0.08

Table 2: Average Running Times
Branch PrDual Penalty BrDrop PrDDrop

10 nodes 0 0.01 0.02 0.55 0.69
15 nodes 0 0 0.15 4.45 8.15
20 nodes 0.2 0.2 0 23.8 46.6

To be consistent when comparing the results for small and large networks, we have also
computed the average deviations of algorithm outputs from the lower bound. These results

are summarized in Table 3.
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Table 3: Average Deviations from Lower Bound for Small Problems
Branch PrDual Penalty BrDrop PrDDrop
10 nodes  19.7/25/18.9 12.4/18.9/11.1 9.1/8.6/8.7 10.2/5.8/9.9 8.1/2.4/7.4
15 nodes  20.5/29.6/20 11.8/19.4/11.1 9.3/9.8/9.3 10.6/6.2/10.6 7.9/2.7/7.4
20 nodes 17.6/26.9/17.6 9.9/18/11.7 7.9/9/9.6 10.4/6/11 6/2.5/8.2

Large Randomly-Generated Instances

As mentioned above, the basis for comparison in this case is the cost of the dual output
of the primal-dual algorithm. Table 4 compares the performances of the algorithms with

respect to this lower bound. Table 5 summarizes the running times in seconds.

Table 4: Average Deviations from Lower Bound for Large Problems
Branch PrDual Penalty
100 nodes  20.9/37/19  7.7/20/8.4  7.1/6.4/78
500 nodes  19.5/37/17.7  7.5/18.6/7.4 7.2/5.7/7.3
1000 nodes  17.6/37.2/17.5 7.2/18.4/7.7 7.2/13.6/7.7

Table 5: Average Running Times
Branch PrDual Penalty

100 nodes 0.5 1.28 8.54
500 nodes 63 160 1561
1000 nodes 370 946 7050

Results on Sparse Graph Instances

For small instances, we have tested the algorithms both on dense and sparse graphs.
Table 6 gives average percent cost deviations from optimum for different graph densities.
The graph density is measured by the percentage of the number of arcs with respect to the
number of arcs in a complete graph (the density of a complete graph is 100%). The costs
are of type 1.

Table 6: Average Deviations from Optimum
density Branch PrDual Penalty BrDrop PrDDrop

100% 11 4.2 1.01 2.13 0.1
80% 9 3 0.98 1.7 0.09
60% 10.3 4.9 1.3 2.3 0.16
40% 9.1 3.2 1.1 2 0.12
30% 9.4 3.1 0.8 1.4 0.12
20% 6.7 2.2 0.7 1.2 0.05

Instances from the TSPLIB Library
We tested the algorithms on four small problems and six large problems. As in the case

of random problems, the basis of comparison is the optimal cost for small problems and the

lower bound for large problems.
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Table 7: Deviations from Optimum for Small Problems
Branch PrDual Penalty BrDrop PrDDrop

brl7.atsp 7.7 7.7 7.7 5.1 0
ftv33.atsp 26 22.2 12.5 6.5 3
ftv35.atsp 22.2 14.6 6.8 8.6 0.14
ftv38.atsp 22.9 14.1 8.24 8.17 1.12

Table 8: Deviations from Lower Bound for Large Problems
Branch PrDual Penalty
krol24p.atsp  26.6 25.1 20.3

ftv170.tsp 19.7 17 17
rbg323.atsp 24.1 24.6 24.6
rbg3b8.atsp 12 9 9
rbg403.atsp 5.7 1.1 1.1
rbgd43.atsp 10.1 5 5

6.4 Analysis of Results

Relative Performance of the Algorithms

Computational results show that the three-approximation primal-dual works well in prac-
tice. In particular, we didn’t get any instance where it returns a solution worse than twice
the optimum; this supports our hypothesis that the primal-dual is a two-approximation al-
gorithm. Its performance is also much better than that of the branchings algorithm, while
the running times of both algorithms are equally good.

The penalty and drop algorithms offer significant performance improvements over branch-
ings and primal-dual algorithms. In particular, primal-dual-drop delivers impressive results:
an optimal solution in most cases and very close to optimum otherwise. However, the penalty
algorithm exhibits much better running time than primal-dual-drop; this is due to the fact
that the number of primal-dual subroutines within the penalty algorithm is much smaller
than the number of those subroutines within primal-dual-drop. Thus, the penalty algorithm
can be considered as even a better alternative giving good tradeoff between the performance
and running time.

We didn’t run the drop algorithms for large networks because of their long running time.
It is an open implementation issue how to reduce the running time of drop algorithms while
keeping their good performance.

Analysis of Results for Different Cost Types
The algorithms perform equally well on instances with type 1 (without triangle inequality)

and type 3 (shortest path distances) costs; but the performance worsens significantly on
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instances with type 2 (narrowed range) costs. This concerns especially the branchings and
primal-dual algorithms. We explain this by the following observation on primal-dual. For
networks with ten nodes, we counted the number of edges in the output of primal-dual and
in the optimal solution. The average number of edges in the primal-dual output (for 100
instances) is about 12 for all three cost types. The average number of edges in the optimal
solutions is ten for the case of narrowed cost ranges, and about 11.2 for the other two cases.

The reason is the following. For the instances with type 2 costs the cost range is [5, 10].
Since the coefficient of variation in arc costs is relatively small, the optimal solution is just a
cycle with ten arcs. On the other hand, the primal-dual output has 12 arcs. Since the extra
arcs can’t be much cheaper than the arcs in the optimal cycle, they push the cost up by
16.7% from the optimum. No wonder the penalty algorithm, whose main feature is reducing
the number of arcs, makes significant improvements over primal-dual in this case.

For the instances with cost types 1 and 3, costs are in range [0, 10]. Some arcs are much
cheaper than the others, and that is why the optimal solution might consist of more than
ten cheap arcs. The average number is 11.2 for the optimal solutions and 12 for the primal-
dual outputs; and correspondingly the cost deviation from optimum is not so big for the
primal-dual.

Sparse vs. Dense Graphs

The performance of the algorithms is generally slightly better on sparser graphs. The
improvement becomes significant when the graph density is reduced to 20%. For branchings
and primal-dual algorithms, the average deviations from optimum are 6.7% and 2.2% in the
case of 20%-dense graphs, while those numbers are 11% and 4.2% for 100%-dense graphs.
This is not surprising if we consider that in 20%-dense graphs, the pool of possible solutions
is much smaller than in 100%-dense graphs, and thus the algorithms are more likely to return

optimal or near-optimal solutions.

7. Future Directions

Here are some problems related to our results that we are planning to consider in the future:

e Improving the factor of three for primal-dual. As mentioned before, the factor of three
is known to be not tight but rather it is the result of our proof technique. Our conjecture
is that 2 — 2/n is the real approximation factor, and computational results support this

conjecture.
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e Fxtending the algorithms to other directed network design problems. It is particularly
interesting how our algorithms would extend to higher-connectivity networks and to the
case of {0, 1}-connectivity requirements between pairs of vertices. The main difficulty in
these extensions is finding appropriate rules for choosing the violated subsets in the primal-
dual method. For the strong connectivity problem, the natural choices for violated subsets
were the strongly connected components and their complements (see Section 2.2). But it is
not clear what should be the right choice when we consider, for example, the most famous
{0, 1}-connectivity problem, the directed Steiner tree problem. In this problem, a minimum-
cost directed out-tree should be constructed from a root to a set of terminals. The subset
requirement is one if and only if the subset contains the root and doesn’t contain at least
one of the terminals. It is easy to verify that if the strongly connected components and their
complements are the only choices for being violated subsets, then after several iterations, no
candidate for a violated subset could be left while the solution is still infeasible. So to make
the algorithm work, a more sophisticated rule is needed for choosing the violated subsets.

But that would also imply more complicated analysis for the approximation factor.

Acknowledgments

The authors would like to thank the anonymous referees for their helpful comments and

suggestions.

References

Agrawal, A., P. Klein, R. Ravi. 1995. When trees collide: an approximation algorithm for
the generalized Steiner problem on networks. SIAM J. on Comput. 24(3) 445-456.

Edmonds, J. 1967. Optimum branchings. J. of Res. of the National Bureau of Standards B
71 233-240.

Frederickson, G. N., J. Jaja. 1981. Approximation algorithms for several graph augmenta-
tion problems. SIAM J. on Comput. 10 270-283.

Goemans, M. X., A. Goldberg, S. Plotkin, D. Shmoys, E. Tardos, D. P. Williamson. 1994.
Approximations algorithms for network design problems. Proc. of the 5th Annual Sym-

pos. on Discrete Algorithms. Association for Computing Machinery, New York. 223-232.

Goemans, M. X., D. P. Williamson. 1995. A general approximation technique for constrained

33



forest problem. SIAM Journal on Comput. 24 296-317.

Held, M., R. Karp. 1970. The traveling-salesman problem and minimum spanning trees.

Oper. Res. 18 1138-1162.

Jain, K. 1998. A factor 2 approximation algorithm for the generalized Steiner network
problem. Proc. of 39th Annual Sympos. on Foundations of Comput. Sci., Palo Alto,
CA. 448-457.

Jain, K., V. Vazirani. 1999. Approximation algorithms for metric facility location and k-
median problems using the primal-dual schema and Lagrangian relaxation. Proc. of 40th

Annual Sympos. on Foundations of Comput. Sci., New York, NY. 2-13.

Melkonian, V., E. Tardos. 1999. Approximation algorithms for a directed network design
problem. Proc. of the 7th Internat. Integer Programming and Combin. Optim. Conf.
(IPC0O’99), Graz, Austria. 345-360.

Rajagopalan, S., V. Vazirani. 1999. On the bidirected cut relaxation for the metric Steiner
tree problem. Proc. of 10th Annual ACM-SIAM Sympos. on Discrete Algorithms. As-
sociation for Computing Machinery, New York, 742-751.

Raz, R., S. Safra. 1997. A sub-constant error-probability low-degree test, and a sub-constant
error-probability PC P characterization of NP. Proc. of the 29th Annual ACM Sympos.
on the Theory of Comput., El Paso, Texas. 475-484.

TSPLIB library. 2003. Traveling salesman problem instances.
ftp://ftp.zib.de/pub/Packages/mp-testdata/tsp/index.html.

Williamson, D. P., M. X. Goemans, M. Mihail, V. Vazirani. 1995. A primal-dual approxi-

mation algorithm for generalized Steiner network problems. Combinatorica 15 435-454.

Zhu, A., S. Khuller, B. Raghavachari. 1999. A uniform framework for approximating
weighted connectivity problems. Proc. of 10th Annual Sympos. on Discrete Algorithms.
Association for Computing Machinery, New York, 937-938.

Accepted by Jan Karel Lenstra; received April 2002; revised July 2003; accepted November
2003.

34



