Some Families of \mathbb{Z}_4-Cyclic Codes and their binary images

(I and II)

J. Wolfmann
GRIM
Université du Sud, Toulon-Var, France

After the publication of [1], which solved the old problem of the formal duality of Kerdock and Preparata codes by using cyclic codes over $\mathbb{Z}_4 = \mathbb{Z}/4\mathbb{Z}$ (ring of integer modulo 4) and the Gray map, this kind of codes has been extensively studied. The Nechaev-Gray map (introduced in [4]) also plays an important role. The action of these two transforms on \mathbb{Z}_4-cyclic codes (linear or not) was considered in [4] and [5]. This way gives rise to constructions of new interesting binary codes obtained from \mathbb{Z}_4-linear cyclic codes. On the other hand, \mathbb{Z}_4-cyclic which are self-dual codes were used to study and construct important lattices and \mathbb{F}_2-self-dual codes (see [3]).

In this work, we introduce and solve several problems on \mathbb{Z}_4-cyclic codes (non necessarily linear) and we use these results to present a family of \mathbb{Z}_4-self-dual linear cyclic codes. In particular we generalize some results of [3].

References

