By plotting the vertices, we can see that the parallelogram is determined by the vectors \(\overrightarrow{AB} = \langle 2, 3 \rangle \) and \(\overrightarrow{AD} = \langle 3, -1 \rangle \). We know that the area of the parallelogram determined by two vectors is equal to the length of the cross product of these vectors. In order to compute the cross product, we consider the vector \(\overrightarrow{AB} \) as the three-dimensional vector \(\langle 2, 3, 0 \rangle \) (and similarly for \(\overrightarrow{AD} \)), and then the area of parallelogram \(ABCD \) is

\[
|\overrightarrow{AB} \times \overrightarrow{AD}| = \left| \begin{array}{ccc}
 i & j & k \\
 2 & 3 & 0 \\
 3 & -1 & 0 \\
\end{array} \right| = |(0) i - (0) j + (-2 - 9) k| = |-11 k| = 11
\]