Outline

- Review of the models
- Discrete dynamics for special connectivities
- Discrete dynamics for random connectivities
- Correspondence between ODE dynamics and discrete dynamics
Some empirical observations

Recordings from certain neuronal tissues such as the olfactory bulb of mammals or the antennal lobe of insects reveal the following pattern: Time seems to be partitioned into episodes with surprisingly sharp boundaries. During one episode, a group of neurons fires, while other neurons are at rest. In the next episode, a different group of neurons fires. Group membership may vary from episode to episode, a phenomenon called “dynamic clustering.”
Recordings from certain neuronal tissues such as the olfactory bulb of mammals or the antennal lobe of insects reveal the following pattern: Time seems to be partitioned into episodes with surprisingly sharp boundaries. During one episode, a group of neurons fires, while other neurons are at rest. In the next episode, a different group of neurons fires. Group membership may vary from episode to episode, a phenomenon called “dynamic clustering.”

How can we mathematically explain this phenomenon?
Each excitatory (E-) cell satisfies

\[
\frac{dv_i}{dt} = f(v_i, w_i) - g_{EI} \sum s_j(v_i - v_{syn}^j) \\
\frac{dw_i}{dt} = \epsilon g(v_i, w_i) \\
\frac{ds_i}{dt} = \alpha(1 - s_i)H(v_i - \theta_E) - \beta s_i.
\]

Each inhibitory (I-) cell satisfies

\[
\frac{dv_i^l}{dt} = f(v_i^l, w_i) - g_{IE} \sum s_j(v_i^l - v_{syn}^E) - g_{II} \sum s_j(v_i^l - v_{syn}^l) \\
\frac{dw_i}{dt} = \epsilon g(v_i^l, w_i) \\
\frac{dx_i}{dt} = \epsilon \alpha x(1 - x_i^l)H(v_i^l - \theta_I) - \epsilon \beta x x_i^l \\
\frac{ds_i}{dt} = \alpha_I(1 - s_i)H(x_i^l - \theta_x) - \beta_I s_i.
\]
Certain excitatory-exhibitory networks models based on these ODEs reproduce the empirically observed pattern of dynamic clustering.
Certain excitatory-exhibitory networks models based on these ODEs reproduce the empirically observed pattern of dynamic clustering.

Can we build a simpler discrete model whose dynamics reliably reflects the one of the underlying ODE model?
The following is true in at least some neuronal networks.

- Neurons fire or are at rest.
- After a neuron has fired, it has to go through a certain *refractory period* when it cannot fire.
- A neuron will fire when it has reached the end of its refractory period and when it receives firing input from a specified minimal number of other neurons.

Let us build a simple model of neuronal networks based on these facts.
A directed graph $D = [V_D, A_D]$ and integers n (size of the network), p_i (refractory period), th_i (firing threshold).

A state $\vec{s}(t)$ at the discrete time t is a vector: $\vec{s}(t) = [s_1(t), \ldots, s_n(t)]$ where $s_i(t) \in \{0, 1, \ldots, p_i\}$ for each i. The state $s_i(t) = 0$ means neuron i fires at time t.

Dynamics on the discrete network $N = < D, \vec{p}, \vec{th} >$:

- If $s_i(t) < p_i$, then $s_i(t + 1) = s_i(t) + 1$.
- If $s_i(t) = p_i$, and there exists at least th_i neurons j with $s_j(k) = 0$ and $< j, i > \in A_D$, then $s_i(t + 1) = 0$.
- If $s_i(t) = p_i$ and there do not exist th_i neurons j with $s_j(t) = 0$ and $< j, i > \in A_D$, then $s_i(t + 1) = p_i$.
For a given discrete model $N = < D, \vec{p}, \vec{th} >$ we may ask about the (possible, maximal, average)

- lengths of the attractors,
- number of different attractors,
- sizes of their basins of attraction,
- lengths of transients
- ...
Assume that refractory period = 1 and threshold = 1.
Assume that refractory period = 1 and threshold = 1.
An Example

Assume that refractory period= 1 and threshold= 1.
The problem of deciding for a given discrete model $N = \langle D, \vec{p}, \vec{th} \rangle$ and a given state \vec{s} whether \vec{s} is transient or persistent is NP-hard.
Even the discrete dynamics may be intractable

The problem of deciding for a given discrete model $N = \langle D, \bar{p}, \bar{th} \rangle$ and a given state \bar{s} whether \bar{s} is transient or persistent is NP-hard.

The problem of approximating within ε the proportion of all nodes that eventually stop firing is also NP-hard.
The problem of deciding for a given discrete model \(N = \langle D, \bar{p}, \bar{h} \rangle \) and a given state \(\bar{s} \) whether \(\bar{s} \) is transient or persistent is NP-hard.

The problem of approximating within \(\varepsilon \) the proportion of all nodes that eventually stop firing is also NP-hard.

For proofs of these and many similar results see W. Just, *Unpublished research notes*, Fall 2006.
Some special connectivities

- Cyclic digraphs.
- Cyclic digraphs with one shortcut.
- Strongly connected digraphs: There is a directed path from every node to every other node.
- Regular digraphs.
- ...

What kind of dynamical properties are implied by these special connectivities?
Theorem

Let \(\vec{p} = [p_1, \ldots, p_n] \), \(\vec{th} = [1, \ldots, 1] > \), and \(p^* = \max \vec{p} \). Then for cyclic digraphs \(D \) with \(n \) vertices the system \(N = \langle D, \vec{p}, \vec{th} \rangle \) satisfies:

1. The length of any attractor is a divisor of \(n \).
2. The length of any transient is at most \(n + 2p^* - 3 \).
3. The number of different attractors is equal to the number of different necklaces consisting of \(n \) black or red beads where all the red beads occur in blocks of length that is a multiple of \(p^* + 1 \). It is equal to
 \[
 \lfloor \frac{n p^* + 1}{p^*} \rfloor \prod_{a \in \text{divisors of } \gcd(k, n - kp^*)} \phi(a)^{\left\lfloor \frac{n - kp^*}{ka} \right\rfloor + 1},
 \]
 where \(\phi \) is Euler's phi function.
Theorem

Let $\vec{p} = [p_1, \ldots, p_n]$, $\vec{th} = [1, \ldots, 1]$, and $p^* = \max \vec{p}$. Then for cyclic digraphs D with n vertices the system $N = \langle D, \vec{p}, \vec{th} \rangle$ satisfies:

- The length of any attractor is a divisor of n.

Winfried Just at Ohio University
Connectivity vs. Dynamics in a Simple Model of Neuronal Networks
Theorem

Let \(\vec{p} = [p_1, \ldots, p_n], \vec{th} = [1, \ldots, 1] > \), and \(p^* = \max \vec{p} \). Then for cyclic digraphs \(D \) with \(n \) vertices the system \(N = < D, \vec{p}, \vec{th} > \) satisfies:

- The length of any attractor is a divisor of \(n \).
- The length of any transient is at most \(n + 2p^* - 3 \).
Theorem

Let $\vec{p} = [p_1, \ldots, p_n]$, $\vec{th} = [1, \ldots, 1]$, and $p^* = \max \vec{p}$. Then for cyclic digraphs D with n vertices the system $N = < D, \vec{p}, \vec{th} >$ satisfies:

- The length of any attractor is a divisor of n.
- The length of any transient is at most $n + 2p^* - 3$.
- The number of different attractors is equal to the number of different necklaces consisting of n black or red beads where all the red beads occur in blocks of length that is a multiple of $p^* + 1$. It is equal to

$$\left\lfloor \frac{n}{p^* + 1} \right\rfloor \sum_{k=1}^{\left\lfloor \frac{n}{p^* + 1} \right\rfloor} \frac{1}{n - kp^*} \sum_{a \in \{\text{divisors of } \gcd(k, n - kp^*)\}} \phi(a) \left(\frac{n - kp^*}{\frac{a}{k}} \right) + 1,$$

where ϕ is Euler’s phi function.
Attractor lengths in strongly connected digraphs

Theorem

Let D be a strongly connected digraph with n vertices that does not have two disjoint directed cycles. Then the length of any attractor in $N = <D, \vec{1}, \vec{1}>$ is bounded by n.

The proof is difficult even for the special case of a Hamiltonian cycle with one shortcut (S. Ahn, Ph.D. Thesis). The complete formulation and proof of the above theorem actually show that strongly connected digraphs for which $N = <D, \vec{1}, \vec{1}>$ has attractors of length $> n$ must have a very special structure. The smallest known example of a Hamiltonian such D has 26 vertices.
Theorem

Let D be a strongly connected digraph with n vertices that does not have two disjoint directed cycles. Then the length of any attractor in $N = \langle D, \vec{1}, \vec{1} \rangle$ is bounded by n.

The proof is difficult even for the special case of a Hamiltonian cycle with one shortcut (S. Ahn, Ph.D. Thesis).
Theorem

Let D be a strongly connected digraph with n vertices that does not have two disjoint directed cycles. Then the length of any attractor in $N = < D, \vec{1}, \vec{1} >$ is bounded by n.

The proof is difficult even for the special case of a Hamiltonian cycle with one shortcut (S. Ahn, Ph.D. Thesis).

The complete formulation and proof of the above theorem actually show that strongly connected digraphs for which $N = < D, \vec{1}, \vec{1} >$ has attractors of length $> n$ must have a very special structure. The smallest known example of a Hamiltonian such D has 26 vertices.
Random connectivities

- For given n, we randomly generate a digraph with n nodes by including each possible arc $<i,j>$ with probability $\rho(n)$; independently for all arcs (Erdős-Rényi random digraph).
- We randomly generate many initial conditions.
- We collect statistics on the proportion of initial states for which the dynamics exhibits selected features.
- How do these features depend on $\rho(n)$?
Some special objects

\[\vec{s}_p = [p_1, \ldots, p_n] \] is the only steady state attractor.
Some special objects

\[\vec{s}_p = [p_1, \ldots, p_n] \] is the only steady state attractor.

A \textit{minimal attractor} is one in which each neuron either never fires or fires as soon as it reaches the end of its refractory period.

\begin{itemize}
 \item A \textit{fully active} attractor is one in which every neuron fires at some time.
 \item An \textit{autonomous set} consists of neurons that fire as soon as they reach the end of their refractory periods, regardless of the dynamics of neurons outside of this set.
\end{itemize}
\(\tilde{s}_p = [p_1, \ldots, p_n] \) is the only steady state attractor.

A \textit{minimal attractor} is one in which each neuron either never fires or fires as soon as it reaches the end of its refractory period.

A \textit{fully active} attractor is one in which every neuron fires at some time.
Some special objects

- $\hat{s}_p = [p_1, \ldots, p_n]$ is the only steady state attractor.
- A *minimal attractor* is one in which each neuron either never fires or fires as soon as it reaches the end of its refractory period.
- A *fully active* attractor is one in which every neuron fires at some time.
- An *autonomous set* consists of neurons that fire as soon as they reach the end of their refractory periods, regardless of the dynamics of neurons outside of this set.
Results of the simulations

Just W, Ahn S, Terman D, Physica D. 2008

Connectivity vs. Dynamics in a Simple Model of Neuronal Networks

Winfried Just at Ohio University
Theorem

1. **The first phase transition at \(\rho(n) \sim \frac{\ln n}{n} \):**
 - Above this threshold: a generic initial state belongs to a fully active minimal attractor.
 - Below this threshold: a generic initial state will not belong to a minimal attractor.
Theorem

1. **The first phase transition at** $\rho(n) \sim \frac{\ln n}{n}$:
 - Above this threshold: a generic initial state belongs to a fully active minimal attractor.
 - Below this threshold: a generic initial state will not belong to a minimal attractor.

2. **The second phase transition at** $\rho(n) \sim \frac{c}{n}$:
 - Above this threshold: the fraction of nodes that belong to the largest autonomous set will rapidly approach one as ρ increases.
 - Below this threshold: this fraction will rapidly dwindle to zero.

Winfried Just at Ohio University
Connectivity vs. Dynamics in a Simple Model of Neuronal Networks
Theorem

1. **The first phase transition at** \(\rho(n) \sim \frac{\ln n}{n} \):
 - Above this threshold: a generic initial state belongs to a fully active minimal attractor.
 - Below this threshold: a generic initial state will not belong to a minimal attractor.

2. **The second phase transition at** \(\rho(n) \sim \frac{c}{n} \):
 - Above this threshold: the fraction of nodes that belong to the largest autonomous set will rapidly approach one as \(\rho \) increases.
 - Below this threshold: this fraction will rapidly dwindle to zero.

3. **Both phase transitions also occur if the digraph is any**
 \(k = \lfloor \frac{\rho(n)}{n} \rfloor \) regular digraph.
Directions for further research

Another phase transition was detected for $\rho(n) \sim 1/n$. Explore what goes on in this (most interesting) region of the parameter space.

Explore these phenomena for random digraphs other than Erdős-Rényi random digraphs (e.g., scale-free degree distributions).

Explore these questions for related discrete models.
See Alla Borysiuk’s talk.

- Another phase transition was detected for $\rho(n) \sim \frac{1}{n}$. Explore what goes on in this (most interesting) region of the parameter space.

- Explore these phenomena for random digraphs other than Erdős-Rényi random digraphs (e.g., scale-free degree distributions).

- Explore these questions for related discrete models.
See Alla Borysiuk’s talk.

- Another phase transition was detected for $\rho(n) \sim \frac{1}{n}$. Explore what goes on in this (most interesting) region of the parameter space.
- Explore these phenomena for random digraphs other than Erdős-Rényi random digraphs (e.g., scale-free degree distributions).
See Alla Borysiuk’s talk.

- Another phase transition was detected for $\rho(n) \sim \frac{1}{n}$. Explore what goes on in this (most interesting) region of the parameter space.
- Explore these phenomena for random digraphs other than Erdős-Rényi random digraphs (e.g., scale-free degree distributions).
- Explore these questions for related discrete models.
Simulation results show a good correspondence between the dynamics predicted by the discrete model and the underlying more realistic ODE model. But can we rigorously prove such a correspondence?
An Architecture

Input from olfactory receptors

E1, E3 E2, E4, E3(ref) E3, E5 E2, E4

I1, I3 I2, I4 I3, I5 I2, I4

Excite Inhibit

Assume: E-cells can excite one another via interneurons.

Winfried Just at Ohio University
 Connectivity vs. Dynamics in a Simple Model of Neuronal Networks
Assume: E-cells can excite one another via interneurons.
Theorem

For the network architecture described above, if the intrinsic and synaptic properties of the cells are chosen appropriately, then there is an exact correspondence between the trajectories of the continuous and discrete systems for any connectivity between the excitatory and inhibitory cells.
What, exactly, does ”exact correspondence” mean?

For simplicity assume $\vec{p} = \vec{1}$.

Partition the state space of E-cell number i into complementary regions F_i ("firing") and R_i ("resting").

For individual trajectories time can be partitioned into subsequent intervals of roughly equal lengths ("episodes"). Except for slight fuzziness on the boundaries, throughout each episode E-cell number i will reside either in F_i or in R_i.

The discrete model accurately predicts the movement between F_i and R_i from one episode to the next for all E-cells and all episodes.
For simplicity assume $\bar{p} = \bar{1}$.
What, exactly, does ”exact correspondence” mean?

For simplicity assume $\vec{p} = \vec{1}$.

- Partition the state space of E-cell number i into complementary regions F_i ("firing") and R_i ("resting").
What, exactly, does ”exact correspondence” mean?

For simplicity assume $\vec{p} = \vec{1}$.

- Partition the state space of E-cell number i into complementary regions F_i (”firing”) and R_i (”resting”).
- For individual trajectories time can be partitioned into subsequent intervals of roughly equal lengths (”episodes”).
What, exactly, does ”exact correspondence” mean?

For simplicity assume $\vec{p} = \vec{1}$.

- Partition the state space of E-cell number i into complementary regions F_i (”firing”) and R_i (”resting”).
- For individual trajectories time can be partitioned into subsequent intervals of roughly equal lengths (”episodes”).
- Except for slight fuzziness on the boundaries, throughout each episode E-cell number i will reside either in F_i or in R_i.

Winfried Just at Ohio University Connectivity vs. Dynamics in a Simple Model of Neuronal Networks
What, exactly, does ”exact correspondence” mean?

For simplicity assume $\vec{p} = \vec{1}$.

- Partition the state space of E-cell number i into complementary regions F_i (”firing”) and R_i (”resting”).
- For individual trajectories time can be partitioned into subsequent intervals of roughly equal lengths (”episodes”).
- Except for slight fuzziness on the boundaries, throughout each episode E-cell number i will reside either in F_i or in R_i.
- The discrete model accurately predicts the movement between F_i and R_i from one episode to the next for all E-cells and all episodes.
The proof of the correspondence theorem

Is elaborate.

Separation of time scale allows to reduce the argument to the limiting case of movement along the nullclines of the fast variables.

Phase plane analysis reveals the dynamics of individual neurons.

The slowest I-neuron in each episode acts as pacemaker.

Plus a lot more messy details.

The proof is robust under some noise.

Winfried Just at Ohio University
Connectivity vs. Dynamics in a Simple Model of Neuronal Networks
The proof of the correspondence theorem is elaborate.

Separation of time scale allows to reduce the argument to the limiting case of movement along the nullclines of the fast variables.

Phase plane analysis reveals the dynamics of individual neurons.

The slowest I-neuron in each episode acts as pacemaker.

Plus a lot more messy details.

The proof is robust under some noise.
The proof of the correspondence theorem

Is elaborate.

- Separation of time scale allows to reduce the argument to the limiting case of movement along the nullclines of the fast variables.
The proof of the correspondence theorem

Is elaborate.

- Separation of time scale allows to reduce the argument to the limiting case of movement along the nullclines of the fast variables.
- Phase plane analysis reveals the dynamics of individual neurons.
The proof of the correspondence theorem is elaborate.

- Separation of time scale allows to reduce the argument to the limiting case of movement along the nullclines of the fast variables.
- Phase plane analysis reveals the dynamics of individual neurons.
- The slowest I-neuron in each episode acts as pacemaker.
The proof of the correspondence theorem is elaborate.

- Separation of time scale allows to reduce the argument to the limiting case of movement along the nullclines of the fast variables.
- Phase plane analysis reveals the dynamics of individual neurons.
- The slowest I-neuron in each episode acts as pacemaker.
- Plus a lot more messy details.
The proof of the correspondence theorem is elaborate.

- Separation of time scale allows to reduce the argument to the limiting case of movement along the nullclines of the fast variables.
- Phase plane analysis reveals the dynamics of individual neurons.
- The slowest I-neuron in each episode acts as pacemaker.
- Plus a lot more messy details.
- The proof is robust under some noise.
For what other architectures of neuronal networks can one prove such correspondence theorems?
Open problems

For what other architectures of neuronal networks can one prove such correspondence theorems?

More generally: Under which conditions does there exist an “exact correspondence” between an ODE system and a Boolean system?
Open problems

For what other architectures of neuronal networks can one prove such correspondence theorems?

More generally: Under which conditions does there exist an “exact correspondence” between an ODE system and a Boolean system?

This last question is the current focus of my research (joint project with Todd Young and a group of graduate and undergraduate students at Ohio University).