Introduction to Infectious Disease Modeling

Infectious diseases are the second leading cause of death worldwide(6). From the Black Death of the Middle Ages, to the current Ebola crisis in Western Africa, infectious disease has been and will continue to be a threat to the human race. Infectious diseases can also cause devastation to livestock or crops. For example, Phytophthora infestans decimated Ireland’s potato crop in the early 19th century which led to the Irish potato famine.

Contact-based modeling is a very common type of model for infectious diseases. It considers a set of different “compartments” to demonstrate how the population can move through the course of a disease. Common compartment-based models are SEIR, SIR, SIS and SI. Figure 1 shows an example of the SEIR model structure. Although time can be modeled as discrete or continuous, here we focus only on continuous-time models. To understand how the hosts will move throughout the compartments we can use a system of differential equations. For example, a general SEIR model as shown in Figure 1 can be modeled by the system of equations shown in Figure 2.

Movement to and from each of the compartments is based both on the amount of hosts in the compartments as well as probabilities that hosts will interact and that certain interactions will be “successful”. For example, β is the rate at which hosts move from the Susceptible compartment to the Infectious compartment. However, β depends on the probability of direct contact between hosts i and j (cij), as well as the probability that a sufficient number of pathogens will be transmitted from host i to j (Yij). In short: β = cijYij.

The Power of Simulation

To visualize the disease dynamics and to assist in model predictions, we are using a program developed by Just, Callender, and Lamar(22) written in the agent-based programmable modeling environment NetLogo(20). Three central parameters in each of our models are R0, infectivity-prob, and-infection-prob, and end-latency-prob. Each probability corresponds to the movement of hosts between compartments. In a standard SIR model, the rate of growth in the infectious category—also called incidence—coincides with the probability that a randomly chosen infected individual will lead to an additional infected individual. If this probability is 0 means the individual will never become infectious; an infection-prob of 1 means it will be infectious by the next time step.

Since latency corresponds to an E compartment (exposed but not infectious), end-latency-prob in an SIR model is 0. A screenshot of the NetLogo program is shown in Figure 5, along a regular lattice contact network. Prevalence, the total number of infectious hosts at a given time, is graphed in the bottom right, showing the respective percentage of nodes which are susceptible (green), infectious (red), and removed (grey).

Discussion on Control Measures

Mathematical modeling can provide insight into the effectiveness of control measures in delaying or reducing the probability of a major outbreak. All measures have advantages and disadvantages that must be balanced to find the most practical result. For example, border control is effective in delaying an outbreak, yet costly and difficult to impose. Such a delay is useful in order to develop a way of reducing the outbreak size. Other control measures may only reduce the outbreak size; e.g. behavior modification, quarantine, culling (for some plant or animal diseases), and vaccinations. Rarely do methods both delay and reduce the final outbreak.

Epidemiologists use final size, the proportion of individuals in the population who experienced infection at some point during the outbreak, to measure the severity of an outbreak. Vaccinations tend to be the most efficient at reducing the final size, and a surprising model called herd immunity plays a large role in this result. The herd immunity threshold, denoted by K, defines the minimum proportion of the population that needs to be vaccinated in order to make the probability of contracting the disease sufficiently small. K can be calculated using the reproductive ratio, R0, and the total population size, N:

\[K = \frac{N}{R_0} + N \]

Figure 7 shows an example of an infection that began at node 0 in an Erdős-Rényi random graph and has infected one additional node. If a sufficient proportion of nodes were initially vaccinated, the probability of an individual actually contracting the disease is vanishingly small. Figures 8 and 9 show the effects of vaccinating a fraction of the population when the underlying contact network is an Erdős-Rényi graph.

Future Work

An area of interest is how the concept of assortative mating affects the dynamics of disease spread. Currently all of our models assume a homogenous population, where the likelihood of disease transmission is the same for each pair of individuals connected by an edge on the graph. Under the assumption of assortative mating, some individuals interact more with certain groups than with others. To accurately model this scenario, we need to reassess the transmission probabilities according to these preferences. This would give a more realistic prediction for how non-random interactions work in a population and how these various groupings affect the transmission of a disease.

We are also interested in investigating how the disease dynamics are affected by network parameters, such as the diameter of a given network (defined as the largest distance between any two nodes in the graph) and the mean or median distance between nodes in the network.

References

Figure 1. General SEIR model. Here S = Susceptible, E = Exposed, I = Infectious, R = Removed.

Figure 2. Generalized system of equations used to model an SEIR model.

Figure 3. Complete graph with 9 nodes.

Figure 4. Tree, with height of 4, root with degree 2, and mean degree 1.335.

Figure 5. Regular Lattice graph with an ongoing infection.

Figure 6. Frequencies of individuals experiencing infection for three different values of R0 in a population of 120 on a complete network. 100 simulations were run for each R0 value. Here we note that the majority of outbreaks (but not all) are minor with R0 = 1.33, and the majority (but not all) are major when R0 = 2.33.

Figure 7. Epidemic outbreak on 100 individuals vaccinated in a population size of 100.

Figure 8. Epidemic outbreak on 100 individuals not vaccinated in a population size of 100.

Figure 9. Outbreak with 30 individuals vaccinated in a population size of 100.

Contact Networks

Contact networks (a.k.a., graphs) are structures comprised of nodes and edges that represent hosts and their possible connections to other hosts. There are several important characteristics of a contact network, such as the mean degree, the diameter, the network structure, etc., that can give insight into the spread of a particular infectious disease(8,9).

Two key assumptions are often made to simplify the modeling process: 1) the assumption of homogeneity postulates that all hosts have the same individual characteristics; 2) the uniform mixing assumption, which can be modeled by a complete graph (shown in Figure 3). postulates that each host is equally likely to have contact with every other host in the system.

As network structure can drastically influence disease dynamics, we are interested in modeling the effects of various contact networks for different diseases. Below are two example contact networks.

The Power of Theory

Mathematical theory can also provide key predictions for the disease. Of particular importance is the size of the basic reproductive ratio (R0), the mean number of secondary infections caused by an average index case in an entirely susceptible population. R0 can be determined using infection rates in continuous-time models, or infection probabilities in discrete-time models:

\[R_0 \approx BN \]
\[R_0 = \frac{BN}{\alpha} \]

Theorems 1 and 2 from Figures 6 and 7 below reveal an important connection between the value of R0 and the likelihood of a major outbreak.

Theorem 1: Assume homogeneity of hosts and uniform mixing in an SIR - SEIR - or SIS model. If R0 < 1 and if the population size is large, then with probability very close to 1, introduction of a single index case into an otherwise susceptible population will result only in a minor outbreak. There will be a constant \(\theta \) such that the expected number of hosts who will experience infection at some time during the outbreak will not exceed \(\theta \), regardless of the population size N.

Theorem 2: Assume homogeneity of hosts and uniform mixing in an SIR - SEIR - or SIS model. If R0 > 1 then there are numbers \(c_{ij} \) and \(s_{ij} \), which satisfy the inequalities \(\frac{c_{ij}}{s_{ij}} < 1 \) such that as long as the population size is large, then with probability very close to 1, introduction of a single index into an otherwise susceptible population will result in a major outbreak with final size close to \(R_0 \). The number \(c_{ij} \) will be larger for larger values of R0, and the number \(s_{ij} \) will smaller for larger values of R0.

Figure 10. Disease Prevalence

Figure 11. Disease Prevalence

Figure 12. Disease Prevalence

Figure 13. Disease Prevalence

Figure 14. Disease Prevalence

Figure 15. Disease Prevalence

Figure 16. Disease Prevalence

Figure 17. Disease Prevalence

Figure 18. Disease Prevalence

Figure 19. Disease Prevalence

Figure 20. Disease Prevalence

Figure 21. Disease Prevalence

Figure 22. Disease Prevalence

Figure 23. Disease Prevalence

Figure 24. Disease Prevalence

Figure 25. Disease Prevalence

Figure 26. Disease Prevalence

Figure 27. Disease Prevalence

Figure 28. Disease Prevalence

Figure 29. Disease Prevalence

Figure 30. Disease Prevalence

Figure 31. Disease Prevalence

Figure 32. Disease Prevalence

Figure 33. Disease Prevalence

Figure 34. Disease Prevalence

Figure 35. Disease Prevalence

Figure 36. Disease Prevalence

Figure 37. Disease Prevalence

Figure 38. Disease Prevalence

Figure 39. Disease Prevalence

Figure 40. Disease Prevalence

Figure 41. Disease Prevalence

Figure 42. Disease Prevalence

Figure 43. Disease Prevalence

Figure 44. Disease Prevalence

Figure 45. Disease Prevalence

Figure 46. Disease Prevalence

Figure 47. Disease Prevalence

Figure 48. Disease Prevalence

Figure 49. Disease Prevalence

Figure 50. Disease Prevalence

Figure 51. Disease Prevalence

Figure 52. Disease Prevalence

Figure 53. Disease Prevalence

Figure 54. Disease Prevalence

Figure 55. Disease Prevalence

Figure 56. Disease Prevalence

Figure 57. Disease Prevalence

Figure 58. Disease Prevalence

Figure 59. Disease Prevalence

Figure 60. Disease Prevalence