Semilocal CS matrix rings of order > 1 over group algebras of solvable groups are selfinjective

K.I. Beidar,a S.K. Jain,b,* Pramod Kanwar,c and J.B. Srivastava d

a Department of Mathematics, National Cheng-Kung University, Tainan, Taiwan
b Department of Mathematics, Ohio University, Athens, OH 45701, USA
c Department of Mathematics, Ohio University–Zanesville, Zanesville, OH 43701, USA
d Department of Mathematics, Indian Institute of Technology, Delhi 110016, India

Received 30 April 2003
Communicated by Kent R. Fuller

Keywords: CS-rings, finitely Σ-CS modules, Semilocal rings, Locally finite groups, Solvable groups, Linear groups.

The following theorem is a sort of an addendum or a sequel to our earlier paper [1]. This result generalizes Theorem 4.3 in [1] to group algebras of solvable groups. For definitions and terminology the reader is referred to [1].

\textbf{Theorem 0.1.} Let K be a field and G be a group. Suppose one of the following conditions is satisfied.

(a) G is a locally finite group.
(b) The group algebra $K G$ is semilocal and G is either a solvable group or a linear group.

Then the following are equivalent.

(i) $M_n(KG)$, $n > 1$, is a right CS-ring.
(ii) $M_1(KG)$ is a right CS-ring.
(iii) KG is right selfinjective.
(4) G is finite.

Proof. (1) \Rightarrow (2) is well-known [2, Lemmas 7.1 and 17.8].

(2) \Rightarrow (3). First assume that G is a locally finite group. Write $R = M_2(KG)$. By [4, Corollary 8.4], it is enough to prove that R is right continuous, that is, any right ideal of R which is isomorphic to a direct summand of R is itself a direct summand of R. Observe that for any two elements a and b of $R = M_2(KG)$ there exists a right selfinjective subring T containing a, b, and the unity of R. To see this, let a and b be any two elements of R and let H be the subgroup generated by the supports of the entries of a and b. Since G is locally finite, H must be finite. Hence KH is right selfinjective [3, Theorem 2.8, p. 79].

So $T = M_2(KH)$ is the desired right selfinjective subring of R containing a, b, and the unity of R. To prove R is right continuous, let I be a right ideal of R and let $I \trianglelefteq eR$ for some idempotent $e \in R$. Suppose $\varphi : I_R \rightarrow eR_R$ is an isomorphism. Let $a = a^{-1}(v)$. Then, as shown above, there exists a right selfinjective subring, say S, containing unity of R such that $a, e \in S$. Obviously φ induces an isomorphism $aS \rightarrow eS$. Since S is right selfinjective, eS is an injective right S-module. Therefore $aS = eS$ for some idempotent $v \in S$. Since S contains the unity of R, it follows that $a^2 = eR$. Consequently R is right continuous.

Now let KG be semisimple and G be either solvable or linear. By [3, Section 3, p. 322]

$$J(KG) = N^* (KG)$$

$$= \{ a \in KG : aS \text{ is nilpotent for every finitely generated subring } S \text{ of } KG \}.$$ In particular, $J(KG)$ is nil. By [3, Theorem 1.5, p. 409], G is locally finite. But then by what we have proved above, KG is right selfinjective.

(3) \Rightarrow (1) follows from the fact that the matrix ring over a right selfinjective ring is again right selfinjective and right selfinjective rings are right CS-rings.

The equivalence of (3) and (4) is well-known [3, Theorem 2.8, p. 79].

Remark 1. The above proof shows that if R is a right CS-ring with unity 1 such that any two elements $a, b \in R$ are contained in a right selfinjective subring S having the same unity 1 then R is right continuous. In particular, if $R = M_2(T)$ for some ring T then R (and hence T) is right selfinjective.

Remark 2. It follows from Remark 1 that a group algebra of a locally finite group is right CS if and only if it is right continuous.

Remark 3. Theorem 0.1 is not true if the order of the matrix ring is not greater than 1. For example, the group ring of an infinite locally finite μ-group over a field of characteristic μ is a local right CS-ring but is not right selfinjective.

Acknowledgment

The authors thank the referee for his helpful suggestions.
References