q-HYPERCYCLIC RINGS

S. K. JAIN AND D. S. MALIK

0. Introduction. A ring R is called q-hypercyclic (hypercyclic) if each cyclic ring R-module has a cyclic quasi-injective (injective) hull. A ring R is called a qc-ring if each cyclic right R-module is quasi-injective. Hypercyclic rings have been studied by Caldwell [4], and by Ososky [12]. A characterization of qc-rings has been given by Koehler [10]. The object of this paper is to study q-hypercyclic rings. For a commutative ring R, R can be shown to be q-hypercyclic ($= qc$-ring) if R is hypercyclic. (Theorems 4.2 and 4.3). Whether a hypercyclic ring (not necessarily commutative) is q-hypercyclic is considered in Theorem 3.11 by showing that a local hypercyclic ring R is q-hypercyclic if and only if the Jacobson radical of R is nil. However, we do not know if there exists a local hypercyclic ring with nonnil radical [12]. Example 3.10 shows that a q-hypercyclic ring need not be hypercyclic. A characterization of local q-hypercyclic rings is given in Theorem 3.9 by showing that local q-hypercyclic rings are precisely qc-rings. The structure of a semi-perfect q-hypercyclic ring is given in Theorem 5.7 whence it follows as a consequence that if R is a semi-perfect q-hypercyclic ring then each cyclic right R-module is a finite direct sum of indecomposable quasi-injective modules. Finally, a characterization of right or left perfect q-hypercyclic (hypercyclic) rings is given in Section 6. Our results depend upon a number of lemmas. Lemma 5.1 regarding the quasi-injective hull of $A \oplus B$, where B contains a copy of the injective hull $E(A)$ of A, though straightforward, is also perhaps of interest by itself, besides being a key lemma in the proof of our Theorem 5.5. We also make use of Koehler's characterization of qc-rings as those which are direct sum of rings each of which is semisimple artinian, or a rank 0 duo maximal valuation ring.

1. Notation and definitions. All rings considered have unity and unless otherwise stated all modules are unital right modules. If M is a module, then $E(M)$ (q.i.h. (M)) will denote the injective hull (quasi-injective hull) of M. An idempotent e of a ring R is called primitive if the module eR is indecomposable. J will denote the Jacobson radical of the ring R. $S(R)$ ($S(R_R)$) will denote the right (left) socle of R. Let $X \subseteq R$, then $r_R(X)$ ($l_R(X)$) will denote the right (left) annihilator of X in R.

Received September 7, 1983.
$N \subset M$ will denote that N is a large submodule of M.

R is called right (left) duo if every right (left) ideal of R is a twosided ideal of R. R is a right (left) valuation ring if right (left) ideals of R are linearly ordered. R is called a right (left) bounded ring if every non-zero right (left) ideal of R contains a non-zero twosided ideal of R. R is called a duo (valuation, bounded) ring if R is both right and left duo (valuation, bounded).

A module M is called local if M has a unique submodule. A ring R is called semi-perfect if R/J is artinian and idempotents modulo J can be lifted, or equivalently every finitely generated module has a projective cover. R is called right (left) perfect if every right (left) R-module has a projective cover, or equivalently, R/J is artinian and every non-zero right (left) R-module has a maximal submodule. R is called uniserial if R is an artinian principal ideal ring. An R-module M is said to have finite Azumaya diagram (A.D) [5] if

$$M = \oplus \sum_{i=1}^{k} M_i,$$

where each R-submodule M_i has a local endomorphism ring.

2. Preliminary results.

Lemma 2.1. Let M be quasi-injective. If $E(M) = \oplus \sum_{i=1}^{n} K_i$ is a direct sum of submodules K_i, then

$$M = \oplus \sum_{i=1}^{n} (M \cap K_i).$$

Proof. See ([7], Theorem 1.1).

The following is a well known equivalence between mod-R, the category of right R-modules and mod-R_n, the category of right R_n-modules, where R_n is the $n \times n$ matrix ring over R.

Lemma 2.2. Let

$$F = \sum_{i=1}^{n} x_i R$$

be a free R-module with free basis $\{x_i | 1 \leq i \leq n\}$. Then $M_R \rightarrow \text{Hom}_R(F, M)$ is a category isomorphism between mod-R and mod-R_n with inverse

$$N_{R_n} \rightarrow N \otimes_{R_n} F.$$
Lemma 2.3. Let \(R/J \) be artinian, \(I \) a right ideal of \(R \),

\[
R/I = \bigoplus_{i=1}^{k} M_i.
\]

Then \(k \) is composition length of \(R/J \).

Proof. See ([12], Lemma 1.8).

Lemma 2.4. Let \(I \) be a two-sided ideal of \(R \) and let \(E \) be an injective \(R \)-module. Then

\[
0:_E I = \{ x \in E | xI = 0 \}
\]

is injective as an \(R/I \)-module.

Proof. See ([13], Proposition 2.27).

Lemma 2.5. Let \(R \) be semiperfect and \(q \)-hypercyclic. Then \(R_R \) is self-injective.

Proof. Let \(I \) be a right ideal of \(R \) such that \(R/I \) is the quasi-injective hull of \(R \). Let \(\phi: R \to R/I \) be the embedding. Since \(R/I \) contains a copy of \(R \), \(R/I \) is injective. Let \(\phi(R) = B/I \). Then \(B/I \subset R/I \). Hence \(B \subset R \). Since \(R \cong B/I \), \(B/I \) is projective. Thus \(B = I \oplus K \) for some \(K_R \subset B_R \). Now

\[
R \cong \frac{B}{I} = \frac{I \oplus K}{I} \cong K.
\]

Therefore \(E(R) \cong E(K) \). But then \(I \oplus K \subset R \) implies

\[
E(R) = E(I) \oplus E(K) \cong E(I) \oplus E(R).
\]

Since \(E(R) \cong R/I \), \(E(R) \) is a finite direct sum of indecomposable modules, by Lemma 2.3. Thus \(E(R) \) has finite Azumaya-Diagram [5]. Therefore, \(E(R) \cong E(R) \oplus E(I) \) implies \(E(I) = 0 \). Hence \(I = 0 \). Thus \(R \) is self-injective.

Lemma 2.6. Let \(R \) be \(q \)-hypercyclic. Then every homomorphic image of \(R \) is also \(q \)-hypercyclic.

Proof. Let \(A \) be a twosided ideal of \(R \). Let \(\overline{R} = R/A \). Let \(\overline{R}/I \) be a cyclic \(\overline{R} \)-module, where \(\overline{I} = I/A \). But \(\overline{R}/I \cong R/I \). Since \(A \subset I \), \(A \) annihilates \(R/I \). Let \(R/K \) be the quasi-injective hull of \(R/I \) as an \(R \)-module. Then

\[
\frac{R}{K} \cong \operatorname{End}_R \left(\frac{E(R)}{I} \right) \frac{R}{I}.
\]

Then it follows that \(A \) annihilates \(R/K \). Thus \(R/K \) may be regarded as an \(\overline{R} \)-module. Since \(R/K \) is quasi-injective as an \(R \)-module, \(R/K \) is quasi-injective as an \(\overline{R} \)-module. Since \(A \) is a twosided ideal and annihilates
R/K, A ⊆ K. Hence

\[\frac{R}{K} \cong \frac{R}{A} \frac{K}{A}. \]

Clearly \(\bar{R}/\bar{K} \) is the quasi-injective hull of \(\bar{R}/\bar{T} \) as an \(\bar{R} \)-module. Hence \(\bar{R} \) is q-hypercyclic.

Lemma 2.7. Let \(R \) be a finite direct sum of rings, \(\{ R_i \mid 1 \leq i \leq n \} \). Then \(R \) is q-hypercyclic if and only if each \(R_i \) is q-hypercyclic for all \(i, 1 \leq i \leq n \).

Proof. This is straightforward.

3. **Local q-hypercyclic rings.** In this section we study local q-hypercyclic rings and show that over such rings every cyclic module is quasi-injective. Throughout this section unless otherwise stated \(R \) will denote a local q-hypercyclic ring.

Lemma 3.1. If \(I \) is a right ideal of \(R \), then \(E(R/I) \) is indecomposable.

Proof. Let q.i.h. \((R/I) = R/A \). Since \(R/A \) is indecomposable, \(E(R/I) \) is indecomposable.

Lemma 3.2. Right ideals of \(R \) are linearly ordered.

Proof. Let \(A \) and \(B \) be right ideals of \(R \). Suppose

\[\frac{A}{A \cap B} \neq 0, \quad \frac{B}{A \cap B} \neq 0. \]

Then

\[\frac{A}{A \cap B} \oplus \frac{B}{A \cap B} \subseteq \frac{R}{A \cap B}. \]

Hence

\[E\left(\frac{R}{A \cap B} \right) = E\left(\frac{A}{A \cap B} \right) \oplus E\left(\frac{B}{A \cap B} \right) \oplus K. \]

By Lemma 3.1, \(E\left(\frac{R}{A \cap B} \right) \) is indecomposable. Hence either

\[\frac{A}{A \cap B} = 0 \quad \text{or} \quad \frac{B}{A \cap B} = 0. \]

Thus either \(A \subseteq B \) or \(B \subseteq A \).

Lemma 3.3. Left ideals of \(R \) are linearly ordered.

Proof. This follows by ([8], Theorem 1) and Lemma 3.2.
Lemma 3.4. Let I be a non-zero right ideal of R. If q.i.h. $(R/I) \cong R$, then R/I is injective.

Proof. Let $\phi: R/I \to R$ be the embedding. Let $\phi(1 + I) = x$. Then $R/I \cong xR$. Let $A = xR$. Then R is quasi-injective hull of A. Thus

$$R = \text{End}_R(R)A = RA = RxR.$$

Therefore, $x \notin J$, and hence x is a unit. Thus $A = R$. Hence R/I is injective.

Lemma 3.5. Let I be a non-zero right ideal of R such that R/I is quasi-injective. Suppose $S(RR) = 0$. Then I contains a non-zero twosided ideal of R.

Proof. Since R is local, $r_R(J) = S(RR) = 0$. We may assume that $I \neq J$. Let $x \in J$ and $x \notin I$. Then $I \subseteq xR$. By linear ordering on right ideals either $x^{-1}I \subseteq I$ or $I \subseteq x^{-1}I$. Suppose $x^{-1}I \subseteq I$. Define

$$\phi: \frac{xR}{I} \to \frac{R}{I}$$

by $\phi(xa + I) = a + I$. Since $x^{-1}I \subseteq I$, ϕ is well defined. Then ϕ can be extended to $f: R/I \to R/I$. Let $f(1 + I) = t + I$. Then

$$1 + I = \phi(x + I) = f(x + I) = tx + I.$$

Therefore $1 - tx \in I$. Since $tx \in J$, $1 - tx$ is a unit. Thus $I = R$. Hence $I \subseteq x^{-1}I$. Let

$$y = xa \in xI, a \in I.$$

Since $a \in I \subseteq x^{-1}I$, $xa \in I$. Thus $xI \subseteq I$. Hence for all $x \in J$, $x \notin I$, $xI \subseteq I$. Thus $JI \subseteq I$. If $JI = 0$ then

$$I \subseteq r_R(J) = 0.$$

Since I is non-zero, $JI \neq 0$. Therefore JI is a non-zero twosided ideal of R contained in I.

Lemma 3.6. R is left bounded or R is right bounded.

Proof. Case 1. If $\text{Soc}(R) \neq 0$, then by linear ordering on left ideals, $\text{Soc}(RR)$ is a non-zero twosided ideal contained in each left ideal and hence R is left bounded.

Case 2. $\text{Soc}(R) = 0$.

Let I be a nonzero right ideal of R. If R is the quasi-injective hull of R/I, then R/I is quasi-injective by Lemma 3.4. Hence I contains a non-zero twosided ideal (Lemma 3.5).

Let R/A be the quasi-injective hull of R/I, for some non-zero right ideal A of R. Then by Lemma 3.5 A contains a non-zero twosided ideal,
say B. Let $\phi: R/I \to R/A$ be the embedding and let $\phi(1 + I) = x + A$. Let $a \in B$. Then

$$\phi(a + I) = xa + A = A.$$

Therefore $a \in I$. Thus $B \subseteq I$. Therefore I contains a non-zero ideal B. Hence R is right bounded.

Lemma 3.7. J is nil.

Proof. Let $a \in J$. Suppose $a^n \neq 0$ for any positive integer n. Let

$$S = \{a^n | n > 0\}.$$

By Zorn's lemma there exists an ideal P of R maximal with respect to the property that $P \cap S = \phi$. Then P is prime. Hence R/P is a prime local θ-hypercyclic ring. Thus R/P is either left bounded or right bounded. Then it follows that R/P is a domain. Since R/P is also local and θ-hypercyclic ring, R/P is self-injective and hence a division ring. Therefore P is a maximal ideal of R. Thus $P = J$, a contradiction. Hence J is nil.

Lemma 3.8. R is duo.

Proof. It suffices to show that for $0 \neq y \in R, yR = Ry$. Let $0 \neq y \in R$. Suppose $yr \notin Ry$. By linear ordering on left ideals $Ry \subseteq Ry$. Therefore

$$y = xyr \quad \text{for some } x \in R.$$

If $x \in J$ then $x^n = 0$ for some n. Then

$$y = xyr = x^2 yr^2 = \ldots = x^nyr^n = 0,$$

which is a contradiction. Thus x is a unit. Hence

$$xyr = y \Rightarrow yr = x^{-1}y \in Ry,$$

which is again a contradiction. Thus $yR \subseteq Ry$. By symmetry $Ry \subseteq yR$. Hence $Ry = yR$.

We now prove the main result of this section.

Theorem 3.9. Let R be a local ring. Then R is θ-hypercyclic if and only if R is a qc-ring.

Proof. Let R be θ-hypercyclic and let A be a non-zero right ideal of R. Then by Lemma 3.8, A is a twosided ideal of R. But then by Lemma 2.6, R/A is a self-injective ring. Thus R/A is a quasi-injective R-module, proving that R is a qc-ring. The converse is obvious.

The following example shows that a θ-hypercyclic ring need not be hypercyclic.
Example 3.10. Let F be a field, x an indeterminant over F. Let
\[W = \{ \{ \alpha_i \} \mid \{ \alpha_i \} \text{ is a well ordered sequence of nonnegative real numbers} \}. \]
Let
\[T = \left\{ \sum_{i=0}^{\infty} a_i x^{\alpha_i} \mid a_i \in F, \{ \alpha_i \} \in W \right\}. \]
Then T is a local, commutative ring and
\[J(T) = \left\{ \sum_{i=0}^{\infty} a_i x^{\alpha_i} \in T \mid a_0 > 0 \right\}. \]
Let
\[R = \frac{T}{xJ(T)}. \]
Then as shown in [4], R is a commutative local hypercyclic ring. Then R is q-hypercyclic (Theorem 4.3). But R/S, where S is the socle of R, is not hypercyclic. Since R/S is a homomorphic ring of R, R/S is q-hypercyclic by Lemma 2.6. Note that R/S is a commutative local ring with zero socle.

A ring has rank 0 if every prime ideal is a maximal ideal. A valuation ring is called maximal if every family of pairwise solvable congruences of the form $x \equiv x_a(K_a)$ (each $x_a \in R$, each K_a is an ideal of R) has a simultaneous solution [9].

We now give a necessary and sufficient condition for a local hypercyclic ring to be q-hypercyclic. In the next section we will show that a commutative hypercyclic ring is always q-hypercyclic.

Theorem 3.11. Let R be local and hypercyclic. Then the following conditions are equivalent.

(i) J is nil.

(ii) R is q-hypercyclic.

Proof. (i) \Rightarrow (ii). By [12], R is duo, valuation, and self-injective. But then R is maximal. Thus R is a qc-ring [10], and hence q-hypercyclic. (ii) \Rightarrow (i) follows from Lemma 3.7.

Remark. 3.12. It is not known whether there exists a semi-perfect (or equivalently local) hypercyclic ring with a non-nil radical ([12], p. 339).

4. **Commutative q-hypercyclic rings.** We begin with

Lemma 4.1. Let R be commutative and q-hypercyclic. Then R is self-injective.
Proof. This is obvious.

Theorem 4.2. Let R be a commutative ring. Then the following are equivalent.

(i) R is q-hypercyclic.
(ii) R is a qc-ring.

Proof. This is similar to the proof of the Theorem 3.9.

Theorem 4.3. Let R be a commutative hypercyclic ring. Then R is q-hypercyclic.

Proof. Let R be hypercyclic. Then by ([4], Theorem 2.5), R is a finite direct sum of commutative local hypercyclic rings. So it suffices to show that a commutative local hypercyclic ring is q-hypercyclic. Let R be commutative local and hypercyclic. Then by [4], R is valuation and self-injective, and J is nil. Then by ([9], Theorem 2.3), R is maximal. Since J is nil, R has rank 0. Then R is rank 0 maximal valuation ring. Thus R is a qc-ring [10], proving the theorem.

5. Semi-perfect q-hypercyclic rings.

Lemma 5.1. Let A and B be right R-modules. Let B be injective containing a copy of $E(A)$. Then

\[q.i.h. \ (A \oplus B) = E(A) \oplus B. \]

Proof.

\[
q.i.h. \ (A \oplus B) = \text{End}_R(E(A) \oplus B)(A \oplus B) \\
= \left(\begin{array}{cc}
\text{Hom}_R(E(A), E(A)) & \text{Hom}_R(B, E(A)) \\
\text{Hom}_R(E(A), B) & \text{Hom}_R(B, B)
\end{array} \right) \left(\begin{array}{c}
A \\
B
\end{array} \right) \\
= \left(\begin{array}{c}
\text{Hom}_R(E(A), E(A))A + \text{Hom}_R(B, E(A))B \\
\text{Hom}_R(E(A), B)A + \text{Hom}_R(B, B)B
\end{array} \right) \\
= \left(\begin{array}{c}
E(A) \\
B
\end{array} \right) = E(A) \oplus B.
\]

The above lemma gives another proof of an interesting result of Koehler.

Corollary 5.2. ([11]). If the direct sum of any two quasi-injective modules is quasi-injective, then every quasi-injective module is injective.

Proof. Let M be a quasi-injective right R-module. By Lemma 5.1

\[q.i.h. \ (M \oplus E(M)) = E(M) \oplus E(M). \]

Then $M \oplus E(M) = E(M) \oplus E(M)$. Therefore $M \cong E(M)$, proving M is injective.
The proof of the next lemma is exactly similar to Osofsky's ([12], Corollary 1.9).

Lemma 5.3. Let \(R \) be semiperfect and \(q \)-hypercyclic and let \(e \) be an idempotent in \(R \). Assume length of \(eR/eI = m \). Then any independent family of submodules of a quotient of \(eR \) has at most \(m \) elements.

Proof. Let \(\{ M_i | 1 \leq i \leq k \} \) be an independent family of submodules of \(eR/eI \). Then

\[
\frac{R}{eI} \cong (1 - e)R \oplus \left(\bigoplus_{i=1}^{k} M_i \right).
\]

Therefore \(E(R/eI) \) is a direct sum of length \(R/J - m + s \) terms, where \(s \geq k \). Thus q.i.h. \((R/eI) \) is a direct sum of length \(R/J - m + s \) terms, by Lemma 2.1. Then Lemma 2.3 gives \(s \leq m \). Hence \(k \leq m \).

Corollary 5.4. Let \(R \) be semi-perfect and \(q \)-hypercyclic, \(e^2 = e \in R \), \(eR/eJ \) is simple. Then submodules of \(eR \) are linearly ordered.

Proof. This follows from Lemma 5.3.

Theorem 5.5. Let \(R \) be a semi-perfect \(q \)-hypercyclic ring. Then \(R \) is a finite direct sum of \(q \)-hypercyclic matrix rings over local rings.

Proof. \(R = e_1 R \oplus \ldots \oplus e_n R \), where \(e_i, 1 \leq i \leq n \) are primitive idempotents.

We will show that for \(i \neq j \), either \(e_i R \cong e_j R \), or

\[
\text{Hom}_R(e_i R, e_j R) = 0.
\]

Suppose for some \(i \neq j \), \(\text{Hom}_R(e_i R, e_j R) \neq 0 \). By renumbering, if necessary, we may assume that \(i = 1, j = 2 \). Let \(\alpha : e_1 R \rightarrow e_2 R \) be a non-zero \(R \)-homomorphism. Then \(e_1 R/\text{Ker} \alpha \) embeds in \(e_2 R \). Since \(e_2 R \) is indecomposable,

\[
E(e_1 R/\text{Ker} \alpha) \cong e_2 R.
\]

Hence \(B = e_2 R \oplus \ldots \oplus e_n R \) contains a copy of \(E(e_1 R/\text{Ker} \alpha) \). Now

\[
R/\text{Ker} \alpha \cong (e_1 R)/\text{Ker} \alpha \times e_2 R \times \ldots \times e_n R.
\]

Let \(A = (e_1 R)/\text{Ker} \alpha \). Then \(B \) is injective and contains a copy of \(E(A) \). Hence

\[
\text{Hom}_R(B, E(A))B = E(A).
\]

Since \(R \) is \(q \)-hypercyclic, for some right ideal \(I \),

\[
R/I \cong \text{q.i.h.} (R/\text{Ker} \alpha) \cong \text{q.i.h.} (A \times B) \cong E(A) \times B.
\]

Thus \(R/I \cong e_2 R \times B \). Then \(R/I \) is projective. Hence \(R = I \oplus K \) for some
right ideal K. Then
\[K \cong R/I \cong e_2R \times e_2R \times \ldots \times e_nR. \]
Thus
\[R = I \oplus K \Rightarrow e_1R \times e_2R \times \ldots \times e_nR \]
\[\cong I \times e_2R \times e_2R \times \ldots \times e_nR. \]
Hence by Azumaya Diagram [5],
\[e_1R \cong I \times e_2R. \]
Since e_1R is indecomposable, $I = 0$. Consequently, $R = K$. Then
\[e_1R \times e_2R \times \ldots \times e_nR \cong e_2R \times e_2R \times \ldots \times e_nR. \]
Again by Azumaya Diagram, $e_1R \cong e_2R$. Thus for $i \neq j$, either
\[e_iR \cong e_jR \quad \text{or} \quad \text{Hom}_R(e_iR, e_jR) = 0. \]
Set $[e_kR] = \sum e_iR$, $e_iR \cong e_kR$. Renumbering if necessary, we may write
\[R = [e_1R] \oplus \ldots \oplus [e_tR], \quad t \leq n. \]
Then for all $1 \leq k \leq t$, $[e_kR]$ is an ideal. Since for any k, $1 \leq k \leq n$, e_kR is indecomposable,
\[\text{End}_R(e_kR) \cong e_kRe_k \]
is a local ring.
Thus $[e_kR] = \oplus \sum e_iR$ is the $n_k \times n_k$ matrix ring over the local ring e_kRe_k where n_k is the number of e_iR appearing in $\oplus \sum e_iR$. That the matrix ring is q-hypercyclic follows from Lemma 2.7.

We now proceed to study q-hypercyclic rings which are matrix rings over local rings.

Theorem 5.6. Let $S = T_n$ be the $n \times n$ q-hypercyclic matrix ring over a local ring T. Then T is q-hypercyclic.

Proof. Let e be a primitive idempotent of S and let eS/eI be a quotient of eS. Since S is q-hypercyclic,
\[\text{q.i.h.} \left(\frac{eS}{eI} \right) \cong \frac{S}{A} \]
for some right ideal A of S. But since submodules of eS are linearly ordered, S/A is indecomposable. Thus $S/A \cong fS/fK$, ([2], Lemma 27.3), for some primitive idempotent f of S, which may be chosen to be e by
itself. Thus $S/A \cong eS/eB$ for some right ideal B of S. Since category isomorphism (Lemma 2.2) takes T to eS, every quotient of T has quasi-injective hull a quotient of T, proving that T is a q-hypercyclic ring.

Theorem 5.7. Let R be a semi-perfect and q-hypercyclic ring. Then R is a finite direct sum of matrix rings over local qc-rings.

Proof. Combine Theorems 5.5, 5.6 and 3.9.

We are unable to show if, in general, the $n \times n$ matrix ring S over a local q-hypercyclic ring is again q-hypercyclic. However we will show in the next section that the result is true if S is a perfect ring. In the following theorem we prove that each cyclic S-module is a finite direct sum of indecomposable quasi-injective modules and generalise this to the case when S is any semi-perfect q-hypercyclic ring in Theorem 5.9.

Theorem 5.8. Let $S = T_n$ be the $n \times n$ matrix ring over a local q-hypercyclic ring. Then every cyclic S-module is a direct sum of indecomposable quasi-injective S-modules.

Proof. Let I be a right ideal of S. Let $e \in S$ be a primitive idempotent of S. Since the category isomorphism (Lemma 2.2) takes T to eS every quotient of eS is quasi-injective. Let

$$\frac{S}{I} = \bigoplus_{i=1}^{k} M_i,$$

where the M_i are indecomposable S-modules. Since S is semi-perfect and M_i indecomposable,

$$M_i = (e_i S)/(e_i A),$$

where e_i is a primitive idempotent of S. Thus S/I is a direct sum of indecomposable quasi-injective S-modules.

Theorem 5.9. Let R be a semi-perfect and q-hypercyclic ring. Then every cyclic R module is a direct sum of indecomposable quasi-injective R-modules.

Proof. Combine Theorems 5.7 and 5.8.

6. Perfect q-hypercyclic rings. A ring R is called right (left) perfect if every right (left) R-module has a projective cover. A theorem of Bass [3] states that the following conditions on a ring R are equivalent.

(i) R is right perfect.

(ii) R satisfies minimum conditions on principal left ideals.

(iii) R/J is artinian and every right R-module has a maximal submodule.
LEMMA 6.1. Let \(R \) be a local right perfect and \(q \)-hypercyclic ring. Then \(R \) is hypercyclic.

Proof. By Theorem 3.9, \(R \) is a \(qc \)-ring and hence \(R \) is duo. Let \(I \) be a nonzero right ideal of \(R \). Then \(R/I \) is quasi-injective and indecomposable, and hence \(E = E(R/I) \) is indecomposable.

First we show that the submodules of \(E \) are linearly ordered. Let \(aR \) and \(bR \) be submodules of \(E \). Let \(A = r_R(a) \). Since ideals of \(R \) are linearly ordered either

\[
r_R(a) \subseteq r_R(b) \text{ or } r_R(b) \subseteq r_R(a).
\]

To be specific let \(A = r_R(a) \subseteq r_R(b) \). Let \(E' = 0 : E^A \). Then \(aR, bR \subseteq E' \). By Lemma 2.4, \(E' \) is injective as an \(R/A \) module. Hence \(E' \) is quasi-injective as an \(R \)-module. Since \(E' \subseteq E \) and \(E \) is injective and indecomposable, \(E' \) is indecomposable as an \(R \)-module and hence \(E' \) is indecomposable as an \(R/A \)-module. Let \(\bar{R} = R/A \). Then \(E' \cong E_R(\bar{R}) \), the injective hull of \(\bar{R} \) as an \(\bar{R} \)-module. Hence \(E' \cong R/A \). Since submodules of \(R/A \) are linearly ordered, submodules of \(E' \) are linearly ordered. Thus \(aR \subseteq bR \) or \(bR \subseteq aR \). Hence submodules of \(E \) are linearly ordered. But then \(E \) must be local, since \(R \) is right perfect. Hence \(E \) is cyclic. Therefore \(R \) is hypercyclic, proving the theorem.

THEOREM 6.2. Let \(S = T_n \) be the \(n \times n \) matrix ring over a local ring \(T \). Let \(S \) be right perfect. Then \(S \) is \(q \)-hypercyclic if and only if \(T \) is \(q \)-hypercyclic.

Proof. Let \(T \) be \(q \)-hypercyclic. Then \(T \) is right perfect local and \(q \)-hypercyclic. Thus by Theorem 6.1, \(T \) is hypercyclic. Further, by Theorem 3.9, \(T \) is a \(qc \)-ring. Since \(T \) is hypercyclic, by ([12], Theorem 1.17), \(S \) is hypercyclic. Let \(e \in S \) be a primitive idempotent. Then as before, the category isomorphism (Lemma 2.2) takes \(T \) to \(eS \). Hence quotients of \(eS \) are quasi-injective and each quotient has injective hull a quotient of \(eS \). Let \(I \) be a right ideal of \(S \). By Theorem 5.8,

\[
\frac{S}{I} = \bigoplus_{i=1}^{k} M_i,
\]

where for all \(1 \leq i \leq k \), \(M_i \) are indecomposable and quasi-injective. Then

\[
M_i \cong (e_iS)/(e_iA)
\]

for some primitive idempotent \(e_i \in S \). Hence

\[
E(M_i) \cong E[(e_iS)/(e_iA)] \cong (e_iS)/(e_iB) \text{ for all } 1 \leq i \leq k.
\]

Since \(S \) is right perfect and hypercyclic, submodules of \((e_iS)/(e_iB) \) are linearly ordered. Hence for all \(1 \leq i \leq k \), submodules of \(E(M_i) \) are linearly ordered. Let
\[H = \text{q.i.h.} (S/I). \]

Then
\[H = \bigoplus_{i=1}^{k} (H \cap E(M_i)). \]

Let \(K_i = H \cap E(M_i) \). Then submodules of \(K_i \) are linearly ordered for all \(1 \leq i \leq k \). But then since \(S \) is right perfect, for all \(1 \leq i \leq k \), \(K_i \) is cyclic. Therefore,
\[K_i = (f_i S)/(f_i D) \]
where \(f_i \in S \) is a primitive idempotent, \(1 \leq i \leq k \). Thus
\[H \cong \bigoplus_{i=1}^{k} (f_i S)/(f_i D). \]

Then \(H \) is isomorphic to a quotient of \(S \), proving that \(S \) is \(q \)-hypercyclic.

The converse follows from Theorem 5.6.

Theorem 6.3. Let \(R \) be right perfect. Then \(R \) is \(q \)-hypercyclic if and only if \(R \) is a finite direct sum of matrix rings over local \(qc \)-rings.

Proof. Combine Theorems 5.5 and 6.2.

Theorem 6.4. Let \(R \) be right perfect and local. Then the following are equivalent.

(i) \(R \) is hypercyclic.

(ii) \(R \) is \(q \)-hypercyclic.

Proof. (i) \(\Rightarrow \) (ii). Then \(R \) is valuation. Let \(I \) be a non-zero right ideal of \(R \). Then \(E(R/I) \cong R/A \) for some right ideal \(A \) of \(R \). Let
\[X = \text{q.i.h.} (R/I). \]

Since the submodules of \(R/A \) and hence those of \(X \) are linearly ordered, and \(R \) is right perfect, \(X \) is local. Thus \(X \) is a cyclic module, proving that \(R \) is a \(q \)-hypercyclic ring.

(ii) \(\Rightarrow \) (i) is Theorem 6.1.

Theorem 6.5. Let \(R \) be right perfect. Then the following are equivalent.

(i) \(R \) is hypercyclic.

(ii) \(R \) is \(q \)-hypercyclic.

Proof. (i) \(\Rightarrow \) (ii). Let \(R \) be hypercyclic. Then by ([12], Theorem 1.18),
\[R = \bigoplus_{i=1}^{t} M_{n_i}(T_i), \]
where $M_{n_i}(T_i)$ is the $n_i \times n_i$ matrix ring over a local hypercyclic ring T_i. Since R is right perfect, T_i is right perfect. Thus T_i is local right perfect and hypercyclic, and hence q-hypercyclic. Then by Theorem 6.2, $M_{n_i}(T_i)$ is q-hypercyclic, proving that R is q-hypercyclic.

(ii) \Rightarrow (i). Proceed as in (i) \Rightarrow (ii) and use Theorem 6.4.

Lemma 6.6. Let R be q-hypercyclic. Then R is left perfect if and only if R is right perfect.

Proof. If R is right (or left) perfect ring then by Theorem 5.7,

$$ R = \bigoplus_{i=1}^{k} M_{n_i}(T_i), $$

where $M_{n_i}(T_i)$ are $n_i \times n_i$ matrix rings over local right (or left) perfect qc-rings T_i. Since T_i's are duo, R is left perfect if and only if R is right perfect.

Theorem 6.7. The following conditions on a ring R are equivalent:

(i) R is right perfect and hypercyclic.

(ii) R is left perfect and hypercyclic.

(iii) R is uniserial.

(iv) R is right perfect and q-hypercyclic.

(v) R is left perfect and q-hypercyclic.

Proof. (ii) \Leftrightarrow (iii) \Rightarrow (i) is a theorem of Caldwell ([4], Theorem 1.5).

(i) \Rightarrow (ii). By Theorem 6.4, R is q-hypercyclic. Then by Lemma 6.6, R is left perfect.

(i) \Leftrightarrow (iv) is Theorem 6.5.

(iv) \Leftrightarrow (v) is Lemma 6.6.

References

_Ohio University,
Athens, Ohio_