Probing excitation/ionization processes in millisecond-pulsed glow discharges in argon through the addition of nitrogen

Glen P. Jackson, Fred L. King*
Department of Chemistry, P.O. Box 6045, West Virginia University, Morgantown, WV 26506-6045, USA

Received 24 June 2002; accepted 31 October 2002

Abstract

The addition of N₂ to a millisecond-pulsed glow discharge (PGD) allows diagnostic measurements of the PGD but is found to drastically influence the transient signals arising from the argon and sputtered analyte atoms. Penning excitation between metastable argon atoms and ground state nitrogen molecules and charge transfer between argon ions and the added nitrogen reduce the degree of ionization of sputtered atoms during the power-on, plateau, period by a factor of ~10 (at 1% N₂ by vol.). The added nitrogen affects sputtered atom emission signals less at this time because electron excitation dominates the excitation of these species. Upon power termination, afterpeak, the added nitrogen prevents plasma recombination in two major mechanisms: (i) the nitrogen reduces the number of argon ions available for recombination in the afterpeak; and (ii) vibrationally excited states of nitrogen slow the thermalization of electrons thereby decreasing recombination efficiency. The argon ion population contributes significantly to the afterpeak increase in the number of metastable argon atoms. These atoms are essential for the afterpeak ionization of sputtered atoms. Judicious selection of the nitrogen partial pressure can tune the delay time of afterpeak ionization/recombination by up to 200 μs. This could be particularly beneficial for time-resolved optical or mass spectrometric analyses.

Keywords: Pulsed glow discharge; Argon; Nitrogen; Ionizing plasma; Recombining plasma; Metastable quenching; Excitation/ionization processes; Glow discharge mass spectrometry

1. Introduction

Glow discharge mass spectrometry (GDMS) is a reliable technique for the bulk and trace analysis of conducting and non-conducting solids [1–9]. Unique analytical advantages are imparted by the dominant mechanisms of analyte ionization that sustain the glow discharge plasma. The ability to optimize the analytical performance of GDMS depends on an improved understanding of the fundamental processes underlying the atomization/excitation/ionization of analytes. Although analytical discharges operate in relatively pure environments of an inert gas, typically argon, various atmospheric contaminant gases can be present that will influence plasma processes and analyte signals.

Whereas the impact of water vapor on glow discharge mass spectrometry (GDMS) ion signals
is well known [10–16], the effect of nitrogen—the main constituent of atmospheric gas—is less well known. Wagatsuma and co-workers [17–19] have studied the effects of \(\text{N}_2 \) and other gases [20–22], in GD optical emission spectroscopy (GD-OES), but their work did not extend as extensively to mass spectrometric studies [17]. The object of this study is to understand the effect of nitrogen on various plasma processes, and the effect on analyte ion signals in GDMS.

These studies also explore the use of nitrogen as a diagnostic tool to probe plasma processes and characteristics. For example, observation of the rovibrational emission spectrum provides a rotational temperature, which is a good indication of the gas temperature [23,24]. Collisions between \(\text{N}_2 \) molecules and metastable argon atoms result in the population of specific vibrational states of \(\text{N}_2 \) [25–29]. Emissions from these vibrational states reflect the relative populations of the two metastable levels at 11.55 and 11.72 eV [26,28].

Careful examination of the ionized species in argon glow discharge mass spectrometry revealed the importance of the metastable states of the discharge gas in ionization processes [30]. The fact that copper ion signals (determined by mass spectrometry) scaled linearly with the product of the copper atom and metastable neon atom populations [determined by atomic absorbance spectroscopy (AAS)] provided considerable evidence for the importance of Penning ionization [31]. A great wealth of research supports the observations of Coburn and Kay—that the metastable atoms are responsible for a large proportion of the sputtered atom ionization in steady-state GDMS [32,33].

Microsecond [34–36] and millisecond [37–43] pulsed glow discharges (PGDs) have provided enhanced ionization efficiencies, and analyze ion signals temporally resolved from the discharge gas species (usually argon). This latter benefit is also highly dependent on the Penning ionization of sputtered atoms following termination of the plasma sustaining voltage [44]. In pulsed glow discharges, power termination enables the electrons to thermalize via elastic collisions with the bath gas [45]. This thermalization of electrons favors their participation in the capture-radiative-cascade (CRC) responsible for the enhancement of metastable atom populations that lead to the afterpeak or afterglow observed in these pulsed glow discharges [46–48]. This has been demonstrated by quenching experiments using methane to prevent the metastable atoms from taking part in the afterpeak processes [49].

The present studies focus on the effects of small quantities of molecular nitrogen in an argon PGD, with emphasis given to the effect on ionization and resulting MS analysis. Optical experiments elucidate many of the effects of \(\text{N}_2 \) addition on ion and excited-state formation—especially in the recombing afterpeak—and are applicable to GD-OES and GD-AAS analyses as well. Time of flight mass spectrometry (ToF-MS) provides insight into the role of metastable argon atoms on analyte signals and persistent signals such as \(\text{ArH}^+ \), \(\text{Ar}_2^+ \) and \(\text{Ar}^2^+ \).

2. Experimental

2.1. Glow discharge

A 4.5-cm diameter iron disk (SRM 1767, NIST, Gaithersburg, MD) served as the cathode sample throughout these experiments. Before taking data, a pre-sputtering time of \(\sim 30 \) min ensured the removal of oxide/impurity residues from the cathode surface. Before this pre-sputtering period, the six-way cross was pumped down to below \(10^{-4} \) torr for several hours. The ultra high purity argon (Airgas) was not further purified before use. Water impurities are assumed to be in the range of 10 ppm. A leak valve (Granville Phillips, Boulder, CO) controlled the addition of nitrogen to the plasma. A pressure gauge (Hastings, Hampton VA) measured the partial pressure of nitrogen before and after each experiment. A second leak valve enabled the controlled addition of UHP argon to generate a total pressure of 0.8 torr. Unless otherwise stated the nitrogen partial pressure equaled 0.01 torr (\(\sim 1\% \) by vol.). Discharge operating power was provided by a system consisting of an electrical chopper (GRX 3000, DEI, Fort Collins, CO) that modulated a DC power supply (OPS-3500, Kepco, Flushing, NY). The electrical chopper uses a square wave produced by a frequency generator (DS 345, Stanford Research Systems,
Sunnyvale, CA) to modulate the voltage. This pulsed voltage system provides a square-wave with rise and fall times less than 45 ns.

2.2. Optical spectrometry systems

The optical spectrometry system used in these studies has been described previously [41,42,50]. Temporal emission measurements were obtained at a fixed wavelength, by monitoring the output of the photomultiplier tube with a digital oscilloscope (9370 M, Lecroy) while the monochromator was held at a constant wavelength. The output of the photomultiplier tube was fed into a boxcar integrator (EG&G PAR 4121B, Princeton, NJ) as the monochromator was scanned to yield temporally resolved emission spectra. The monochromator and boxcar were synchronized so that the boxcar integrated a 1-μs gate width of signal from 10 consecutive pulses before the monochromator scanned to the next position. The boxcar therefore captures at least two data points per position of the grating. The gate could be shifted to any delay time from the onset of the glow discharge pulse to obtain only the emission spectra emitted during the 1-μs window at that delay time. This data acquisition setup is therefore able to monitor the emission lines of many different species at a specific time in the plasma. Temporal absorption measurements were obtained as described previously using a lock-in-amplifier (EG&G PAR 5210, Princeton, NJ) linked to the chopper of the incident light beam to provide the oscilloscope with a signal [51].

2.3. Time-of-flight mass spectrometry (ToF-MS) system

The pulsed glow discharge time-of-flight mass spectrometry system employed in these investigations is described elsewhere [43]. Operating parameters are given in Table 1. The packet of ions to be analyzed in the flight tube is extracted at right angles to the incident ion beam of the ion extraction lenses. This allows mass spectra to be collected at different times throughout the pulse cycle. A digital delay generator (4144, EG&G, Princeton Applied Research, Princeton, NJ) provided the delayed extraction pulses and was triggered by the same function generator that creates the glow-discharge pulse. Used in combination with the digital recording oscilloscope this arrangement enabled mass spectra to be obtained at selected temporal intervals with respect to the pulse trigger, in a similar manner described for the emission spectra above.

3. Results and discussion

3.1. Bath gas temperature measurements

In the present study, the rotational temperature of N$_2^+$ in a millisecond-pulsed glow discharge is determined for a 0.8-torr argon plasma with ~1% N$_2$ (vol.). The emission spectrum obtained for the first negative band of N$_2^+$ (B$^2\Sigma_u^+ \rightarrow X^2\Sigma_g^+$) is shown in Fig. 1a. This spectrum is a time-averaged spectrum. The monochromator was scanned at 0.05-nm increments with an integration time of 0.5 s per point so the emission intensity measured at each wavelength was integrated over approximately 25 pulse cycles. Following the methodology provided by Harrison and co-workers [23,24], the peak intensities of the even R branch of lines
were used to generate a Boltzmann plot of $aI/2(K''+1)$ vs. $(K''+1)(K''+2)$, as demonstrated in Fig. 1b, where a is the constant 2 for the even numbers of R, I is the intensity of the line and K'' is the rotational quantum number. The slope of this line is equal to $-Bhc/kT_{rot}$ where B is the rotational constant of the vibrational level, h is Planck's constant, c is the speed of light, k is the Boltzmann constant and T_{rot} is the rotational temperature. Substituting in the values of the constants, the slope is equal to $-1.296/T_{rot}$, giving a temperature of 730 K at 5 mm above the cathode. The temperature reaches a maximum of 850 K at a distance 1 mm from the cathode surface. This temperature is considerably higher than the largest rotational temperatures reported previously (of 500–600 K) [23]. However, this study uses a larger pulse power than the previous study, and a lower nitrogen partial pressure. It has been shown that partial pressure of nitrogen can have a signif-

Fig. 1. (a) Time-averaged emission spectrum of the first negative column of N$_2^*$ in a PGD. Spectrum shown was taken at 5 mm above the cathode surface. (b) Boltzmann plot for the determination of T_{rot} from the emission spectrum. One percent N$_2$ in 0.8-torr Ar, 1.5-W peak power.
icant effect on the temperature measurements (with higher temperatures measured at lower partial pressures of N₂) [24].

A boxcar integrator, used in conjunction with the monochromator as described in Section 2, provided spectra from which time resolved temperature measurements could be obtained. Emission spectra collected before 2 ms and after 5 ms did not contain sufficient signal intensity to be able to calculate reliable temperatures. Between 2 and 5 ms the temperatures were not significantly different from the time-averaged spectra of 720–850 K. Gas temperatures in the prepeak time regime could not be determined using this approach because it actually takes >2 ms for the vibrational levels of N₂ to equilibrate with the gas temperature at the pulse onset [52].

Fig. 2 shows the time-averaged rotational temperature calculated at different distances above the cathode. It is found that the gas temperature decreases as the distance from the cathode increases, consistent with previous findings [23,24]. Two factors contribute to the increased temperature near the cathode: (i) argon ions accelerate across the cathode fall and charge exchange with argon atoms to create fast argon atoms; and (ii) the sputtering process releases fast atoms and ions [2,8]. These two effects generate atoms and ions with elevated kinetic energies and subsequent elastic collisions efficiently re-distribute this energy to the bulk plasma atoms, thereby increasing the temperature. Because these two methods of kinetic energy deposition are cathode-region specific, the gas temperature is greater here than elsewhere.

In steady-state GDs it is also possible for the cathode to resistively heat as the current flows through the sample. The increased cathode temperature provides another method for the gas near the cathode to acquire additional kinetic energy. In the PGD, the cathode does not heat up as much (this is one benefit of pulsing the discharge) because the discharge is only on for a fraction of the time and the cathode cools between pulses.

3.2. N₂ quenching of metastable argon atoms

Considerable research has shown [25–29] that electronic energy can be exchanged between the metastable states of argon and the electronic ground state of N₂ in the reaction

\[\text{Ar}^m + \text{N}_2(X^1\Sigma_g^+) \rightarrow \text{Ar}^0 + \text{N}_2(C^3\Pi_u) \] (1)
Fig. 3. Comparison of different nitrogen molecular emissions as a function of distance above the cathode. One percent N₂ by volume in 0.8-torr Ar, 5-ms pulse width, 25% duty cycle, ~1.5-W peak power.

The electronically excited nitrogen molecule can also be vibrationally and rotationally excited in this reaction. Indeed, the rovibrational emission spectrum for emissions arising from the C³Πᵤ manifold (not shown) showed rotationally excited states of considerably higher quantum numbers than is observed in Fig. 1 for the excited N₂⁺ emissions. Both metastable argon states can populate the v' = 0,1,2 vibration levels, but only the 3P₀ metastable state, at sufficient collision energy, can populate the v' = 3 vibrational level [26,28]. The reaction rate for Eq. (1) is ~3.0 × 10⁻¹¹ cm³ s⁻¹ for the 3P₀ state [29,53–56] and ~1.6 × 10⁻¹¹ cm³ s⁻¹ for the 3P₀ state [55,57]. Although the quenching rate of metastable atoms by N₂ is not particularly fast compared to other small molecules—the quenching rate for water is an order of magnitude faster [57]—the number density of N₂, ~3 × 10¹⁴ cm⁻³ (8 × 10⁻³ torr), gives quenching rates in the order of ~10⁴ s⁻¹. At typical number densities [58,59] of Ar²⁺ of ~10¹¹ cm⁻³ s⁻¹ (without quenching), [N₂] ≫ [Ar²⁺] and the metastable atoms should be efficiently quenched.

The excited molecular products undergo radiative relaxation with lifetimes of the second positive transitions(C³Πᵤ → B³Πₓ) in the order of 40 ns [60,61]. Given the number density of N₂ and a bath gas temperature of ~800 K, Penning excitation of the nitrogen molecule will result in emissions from the nascent C³Πᵤ products of N₂ before collisional mixing, or rovibrational relaxation can occur [25,28,54].

Several methods exist to verify that excited states of N₂ are formed via Penning excitation in the discharge, and not by fast atom or electron excitation. Two of the most distinguishing factors are (i) that the v' = 0 vibrational level of the C³Πᵤ manifold will be overpopulated with respect to the Frank–Condon probability factors in the presence of metastable atoms; and (ii) that the rotational fine structure of the v' = 0 will extend up to K' ≈ 49, independent of temperature. Also, because the metastable argon states cannot populate nitrogen levels above the v' = 3 level, emissions from these levels will not be observable.

As discussed above, the rotational emission spectrum of the (0,0) band of second positive emission with the band head at 337.1 nm showed considerable rotational excitation. The extensive excitation of higher rotational levels is clear evidence for the transfer of energy from metastable states of argon. Emissions from vibrational levels > v' = 3 were not observed, also supporting the idea that the excited states are formed predominantly by Penning excitation.

Fig. 3 compares the steady-state emissions of the band-heads for various nitrogen molecular emissions as a function of distance above the cathode. The (0,0) and (2,1) band heads at 337.1
and 313.6 nm, respectively, show very similar behavior with an emission maximum near the cathode surface. These values are self-consistent with energy transfer from the metastable atom population that also maximizes at the cathode surface [32,33,51,62]. The (3,2) band emission, corresponding to energy transfer from the 3P_0 metastable state (or possibly the resonant 3P_1 state) is less intense at the cathode surface relative to the negative glow region. This difference could reflect differences in the relative distributions of the metastable states, but because energy transfer from the resonant 3P_1 state cannot be ruled out, this conclusion cannot be verified. The molecular ion emission at 391.3 nm shows considerably different behavior, having a maximum at the edge of the negative glow, at 2–3 mm, and a minimum at the cathode surface. This level lies above the IP of argon, so the only mechanism of populating this state is via electron excitation. Because emissions from the second positive band show such different behavior, this again is verification that the C3P_0 level is populated predominantly by the metastable atoms.

3.3. Effects of N$_2$ on afterpeak ion–electron recombination

It is well known that the afterpeak period of the PGD is CRC-like in behavior [63]. The fundamental characteristic of the CRC plasma is the downward flow in energy from ion and excited states to the ground-state atoms. The switch from an ionizing plasma to a recombining plasma causes a population inversion and, because of the relatively low electron densities in these conditions, the decay process is predominantly radiative. Although the CRC ultimately ceases at the ground state levels, it is possible for the decay process to pause at the metastable levels because spin-selection rules disallow their decay to the ground state. This is one reason why removal of the plasma-sustaining voltage ordinarily increases the number density of metastable states.

Fig. 4 provides an example of the temporal emission profile at 337.1 nm for the (0,0) band of the second positive transition. Notice that there is no afterpeak increase in the emission for this line, even though one would expect the metastable atom density to increase in afterpeak. Previous work showed that recombination is an effective way of increasing the number density of metastable atoms in the afterpeak period [51]. The decay rates measured in these experiments for the second positive transitions are only marginally slower than for the first negative transitions of the nitrogen molecular ion. If the nitrogen molecules quenched the metastable atoms after they formed, the decay rate for the second positive system should be considerably longer than the first negative system.
Fig. 5. Effect of nitrogen on the afterpeak population of the $^{3}\text{P}_2$ metastable state of argon. Steady-state values have been normalized to the same value at 5.0 ms.

of the N_2^+ ion. Therefore, it is clear that the nitrogen must be preventing metastable atom formation in the afterpeak—not simply quenching them after they form. Because a large portion of the afterpeak metastable atom population is formed via capture-radiative-cascade (CRC), experiments were performed to discern the effect of N_2 on the afterpeak processes.

Absorption measurements of the $^{3}\text{P}_2$ metastable state at 811.5 nm revealed that the afterpeak increase in metastable atoms normally observed in pure argon PGDs is not observed with 1% N_2 present. Fig. 5 demonstrates this effect for the region 6 mm above the cathode. Closer to the cathode, afterpeak increases in metastable atoms are not observed in pure argon, so nitrogen did not affect the decay rate of the metastable atoms in this region.

The absorption measurements show that there is no afterpeak increase in metastable atoms when nitrogen is present, which explains why no afterpeak increase is observed for the second positive transition of N_2. It should be noted that although deconvoluted data are shown in Fig. 5 the process does not completely remove the effects of the RC time constants [51]. The afterpeak maximum therefore appears more quickly than shown by the data.

Fig. 6 shows the afterpeak/steady-state absorption ratio of the $^{3}\text{P}_2$ metastable atom populations...
plotted as a function of distance above the cathode. The relative populations were determined in a ‘pure’ argon discharge, and with 1% N₂ added. When no afterpeak increase is observed, the absorption measurement at 5.5 ms is used. This is the time at which afterpeak signals reach a maximum. A ratio greater than one, as seen for the \(^3P_2\) state in pure argon, indicates an afterpeak increase in the population. Both metastable states show an increase in the afterpeak/steady-state ratio as increasing distances from the cathode, but, as observed previously [51] for the copper/argon plasma the afterpeak/steady-state ratios for the \(^3P_2\) states are considerably larger than the \(^3P_0\) state.

When nitrogen is admitted, there is no afterpeak increase in the number of metastable atoms, as shown in Fig. 5, and the ratio remains close to 0.5 at each sampling point. This shows that the decay rate is approximately equal at each distance, although the time constant inherent in the absorption measurements could mask any small changes in decay rates.

The absorption measurements in Figs. 5 and 6 show the effective removal of metastable atoms from the afterpeak, but these measurements do not reveal the exact nature of quenching, i.e. whether the metastable atoms are quenched after they are formed, and/or if the metastable atom formation is prevented. As alluded to above, the N₂ emissions indicate that metastable atoms are prevented from forming rather than quenched once they are formed. Examination of the afterpeak emissions arising from different excited neutral atoms provides insight into the dominant afterpeak quenching mechanism.

Careful analysis shows that the added nitrogen deleteriously affects, and in fact prevents, the CRC process; thereby yielding an entirely different afterpeak outcome. Fig. 7a,b shows the effect of 1% nitrogen on the afterpeak emission at 811.5 nm at 4 and 8 mm above the cathode, respectively. This emission corresponds to a 4p–4s transition (2p⁰ – 1s⁰) and leads to the formation of the \(^3P_2\) metastable state. At 4 mm, 1% nitrogen has very little effect on the steady-state population of the upper 4p state, as demonstrated by the similar emission intensities between 4 and 5 ms. Close to the cathode, the electron and fast atom collisions populating and depopulating the 4p (and 4s) states are fast and outweigh any depopulation caused by the nitrogen. Further from the cathode, at 8 mm for example (Fig. 7b), the steady-state populations of the 4p states are partially quenched by the added nitrogen. This is because excitation and de-

Fig. 7. Emission intensity at 811.5 nm at (a) 4 mm and (b) 8 mm vs. time to show the effect of nitrogen on the afterpeak emissions in an argon PGD. Pulse length: 5.0 ms, 25% duty cycle, 0.8-torr Ar, ~1.5-W peak power, Fe cathode.
excitation rates are slightly slower here, and stepwise electron excitation via the metastable states is more prominent [64]. Therefore, electronic energy transfer from excited argon states to nitrogen states is more noticeable here.

Fig. 7a,b shows that when the voltage is removed from the pure argon plasma at 5.0 ms, an afterpeak increase in emission ensues. In the presence of 1% nitrogen, this effect is almost completely absent. To answer an earlier question, these experiments show that the added nitrogen does prevent the metastable atoms from forming in the afterpeak, possibly in addition to quenching any that do form. There are two possible methods for N₂ intervention in the CRC process: (1) the nitrogen reduces the capacity for argon ions to participate in recombination; and (2) the nitrogen reduces the capacity for electrons to participate in recombination.

3.3.2. Effect of N₂ on electrons

The addition of 1% nitrogen to the plasma shows a reduction in the number density of argon ions and a reduction in the capacity for argon ion–electron recombination in the afterpeak. By varying the concentration of nitrogen, it is also possible to determine an electron-energy effect. Fig. 9 shows the emission at 811.5 nm as a function of time at different partial pressures of nitrogen. The method for adjusting the partial pressures was to close the nitrogen valve and allow the vacuum pump to slowly remove the nitrogen. Before closing the valve, the plasma established the usual operating condition of ~1 mtorr (~1% by vol.) of N₂ in the 0.8-torr Ar plasma. While this experiment does not provide quantitative results, the observations that it does provide are informative.
Fig. 9. Emission from the 811.5-nm line as a function of time to show the effect of decreasing nitrogen in the discharge. The times labeled in the figure refer to the time after the nitrogen valve was closed. Measurements made 5 mm above the cathode, 5.0-ms pulse length, 25% duty cycle, 0.8-torr Ar, ∼1.5-W peak power, Fe cathode.

As nitrogen is pumped out of the discharge region, an afterpeak appears within the first minute. The peak is small and has a peak maximum later than 5.3 ms. As more nitrogen is removed from the plasma, the afterpeak increases in intensity and appears closer in time to the termination of discharge power. After 15 min, the plasma resembles ‘pure’ conditions and the afterpeak maximum is close to 5.1 ms.

Increasing the partial pressure of nitrogen has the unquestionable effect of delaying the appearance of the afterpeak, and in so doing, reduces the intensity of the emissions when they finally do appear. The number densities of argon ions was not determined in a comparative experiment, but we will assume that the steady-state values of $[\text{Ar}^+]$ will vary somewhat linearly with the nitrogen concentration between the two limits established in Fig. 8. Charge transfer reactions between argon ions and nitrogen molecules could feasibly account for the difference in emission intensity in the afterpeak, because increasing $[\text{N}_2]$ would decrease the number of argon ions available for recombination. Although this mechanism can account for the intensity of the afterpeak emissions, it does not explain the delayed appearance at higher concentrations of N_2.

Because recombination is inefficient until electrons reduce their kinetic energy to the gas temperature, a time delay between voltage termination and recombination will be observed while the electrons collisionally cool with bath gas atoms [68,69]. Although the addition of lighter, atomic ions can speed up this thermalization process [70], vibrationally excited molecular species can slow down the process [52,71,72]. The latter effect is caused by superelastic collisions between electrons and (mostly) vibrationally excited molecules; the vibrational temperature of the nitrogen can be an order of magnitude larger than the rotational temperature under similar operating conditions [23,24,71].

The time required for nitrogen to attain these high vibrational states is in the order of 10^{-5} to 10^{-3} s [71,72] so the electron-temperature decrease in the afterpeak will be highly dependent on the pulse width—operating the PGD in the microsecond regime may not display the superelastic-collision effect. The internal energy contained in the various modes of the nitrogen molecule can increase the time the electrons take to reach the low temperatures required for efficient recombination. At high nitrogen concentrations (time zero in Fig. 9), superelastic collisions almost
completely prevent the electrons from thermalizing before they are lost by ambipolar diffusion [2] to the chamber walls. Under these conditions, recombination effects are not observed. As the quantity of nitrogen decreases—with increasing time after the valve closure—the possibility for superelastic collisions decreases, so the time-delay before recombination occurs also decreases.

The effects of 1% nitrogen on afterpeak processes are shown to be multifaceted. At 1% nitrogen, charge transfer with argon ions—and subsequent dissociative recombination of the resultant nitrogen ions—decreases the number density of argon ions by an order of magnitude. High-energy vibrational modes, developed during the 5 ms before the voltage termination, prevent electrons from kinetically cooling in the afterpeak. Consequently, very little recombination occurs for argon ions and the afterpeak emissions are vastly reduced. As the nitrogen concentration decreases, fewer argon ions are removed by charge transfer reactions, fewer superelastic collisions are possible for electrons, and more CRC occurs for argon in the afterpeak.

3.4. Effect of N₂ on analyte signals

 Whereas the excitation of sputtered analyte atoms in GDs and PGDs occurs almost exclusively by electron excitation, ionization occurs by three predominant processes [2,5,6,8]. These processes are Penning ionization (PI) [73], charge transfer (CT), and electron ionization, given, respectively, by the three equations below.

\[
\text{Ar}^\text{m}^0(3\text{P}_2/3\text{P}_0) + M^0 \rightarrow \text{Ar}^0 + M^+ + e^- \tag{4}
\]

\[
\text{Ar}^+ (2\text{P}_{1/2}/2\text{P}_{3/2}) + M^0 \rightarrow \text{Ar}^0 + M^{++} + e^- \tag{5}
\]

\[
e^- + M^0 \rightarrow M^+ + e^- \tag{6}
\]

\[\text{Ar}^m \] refers to one of the metastable states of argon (at 11.55 and 11.72 eV), \[M^0 \] is the ground state sputtered metal atom, and \[\text{Ar}^0 \] is the ground state of argon, and \[M^{++} \] is a ground- or excited ion state of the metal. If the ionization potential (IP) of \[M \] is less than the metastable state of argon (as is the case for all metals in the periodic table), then PI will occur at approximately one-fifth of the collision frequency [44,74]. If the second IP of \[M \] is also below the metastable states, as is common for the rare earth elements [75], \[M \] can be doubly-ionized in a single PI collision [76,77]. Several reports have shown that Penning ionization is one of the most dominant ionization mechanisms in unconfined GDs below 2 torr [30,78]. When operated at higher pressures, such as in the Grimm source [18,22,49,79–86], or when confined, such as in hollow cathode geometries [82,86–89], excitation and ionization are less dependent on metastable atom populations. At higher pressures, metastable atom number densities are reduced by increases in metastable–metastable collisions, electron de-excitation, and collisional de-excitation by atoms and ions. The optimum pressure range for maximum metastable atom formation is \(\sim 0.8 \) torr [58,90,91], as used in these studies.

CT reactions are most efficient when an efficient overlap exists between the argon ion and the neutral with which it reacts [92]. The \(2\text{P}_{1/2} \) ground state argon ion overlaps well with an excited state of the copper ion, resulting in enhanced population of this state with respect to states close in energy. This enhancement of the 224.7-nm line for Cu II, indicating CT, has been witnessed mostly in higher pressure (>1 torr) discharges [17,20,82,83,93], and less so in lower pressure GDs [91].

Electron excitation and ionization are more dominant in higher-pressure GDs when PI contributions are reduced. Electron temperatures and excitation temperatures have been determined in a number of different steady-state glow discharge sources using a number of different methods. Langmuir probe measurements [78] and spectroscopic studies [23,24,45,79,94–96] show that the electron temperature is not particularly sensitive to operating conditions, but is sensitive to the sample cathode [78].

Of these three mechanisms, Penning ionization is expected to dominate ionization processes, while electron excitation from the ground state is expected to dominate the excitation processes for the sputtered atoms. Charge transfer, while possible
for iron [97], is not expected to be so important at these pressures.

3.4.1. Fe atomic emission

Fig. 10 shows the effect of 1% nitrogen addition on the emission signals of Fe I. The two lines observed are the 3d^64s4p–3d^64s^2 (3.33–0.00 eV) transition at 371.99 nm, and the 3d^74p–3d^74s (4.41–0.99 eV) transition at 361.88 nm. The heavy lines are the emissions collected under normal operating conditions (no nitrogen added) and behave similarly to the copper lines discussed elsewhere [98,99]. Close to the cathode (<2 mm), very little afterpeak is observed, and further from the cathode (>3 mm) the afterpeak intensity increases, relative to the steady-state signals. The CRC process that occurs when the voltage is removed accounts for the presence of the afterpeak. Fig. 10 shows that when 1% nitrogen is added the afterpeak emissions are no longer prevalent. This follows the same trend observed for argon atom emissions described above. With 1% nitrogen added, high-lying vibrational states—excited during voltage-on period—provide kinetic energy to electrons in the afterpeak via superelastic collisions. The electrons, therefore, take longer to thermalize and consequently some will be lost by diffusion to the walls; thus the CRC is reduced.

The reduction in emission intensity during the steady state could be caused by a reduction in
Fig. 11. Emission intensity at 4.9 ms at (a) 371.99 nm and (b) 811.5 nm as a function of distance above the cathode. Conditions given in Fig. 10.

electron temperature or number density. The nitrogen absorbs energy into internal modes during the voltage-on period [52,72], and this energy transfer process presumably reduces the electrons’ kinetic energy. In the absence of electron-temperature measurements, such speculation cannot be validated. Wagatsuma and co-workers have shown that reduced emission intensities in Ar/N\textsubscript{2} plasmas could be caused, in part, by a reduction in sputtering rate [17]. A lower sputtering rate, and hence lower atom number density in the plasma would cause a uniform reduction in emission intensity. Fig. 10 shows that the reduction in emission intensity in the steady-state is indeed fairly uniform in space with approximately 50% reduction. This is shown more clearly in Fig. 11a, where the steady-state emission at 371.99 nm is plotted as a function of distance. The same effect is not as conspicuous for the bulk plasma gas (argon) as seen by the emission intensity at 811.5 nm in Fig. 11b. The emissions are not reduced to the same extent as the iron lines, indicating the specificity of emission reduction.

Fang and Marcus report that reduced sputter yields are expected when lighter atoms are used as projectiles for cathodic sputtering [78]. The occurrence of N2+ or N+ charge carriers impinging on the cathode surface could produce the lower
sputtering yields. Wagatsuma and Hirokawa note with the introduction of relatively small amounts of nitrogen into argon GDs (<1%), the emission intensity is a good predictor of the sputtering rate (as determined gravimetrically) [18]. The 40–50% reduction in emission intensity observed here indicates a 40–50% decrease in sputter rate.

3.4.2. Fe ion signals

Fig. 12 shows the $^{56}\text{Fe}^+$ signal as a function of sampling distance above the cathode taken at 4.9 ms after pulse initiation. These signals exemplify steady-state signals. The addition of 1% nitrogen drastically reduces the iron signals but the effect is not uniform across the discharge (notice the logarithmic scale). Close to the cathode (2–4 mm), iron ion signals are reduced by factors of 10–20, but at greater sampling distances (5–7 mm), iron ion signals decreased by up to a factor of 30. The difference between emission attenuation factor (2 throughout) and ion attenuation factor (10–30) for Fe is too great to be due to an experimental artifact. Clearly, excitation and ionization processes are strongly decoupled, especially in the region above 4 mm.

This decoupling was also observed by Ratliff and Harrison [16] by the time-dependent emission and ion signal monitoring of Cu in response to pulses of water vapor introduced into the GD. Cu emissions were only briefly reduced by the introduction of a pulse of H_2O, but Cu ion signals were reduced for a considerably longer time. This indicates that although the electron energy distribution function (EEDF) was only slightly affected by the pulse of H_2O, the mechanism responsible for ionizing the copper was more sensitive to the trace amounts of water. This decoupling demonstrates the minor role that electrons play in ionizing sputtered atoms under these conditions, and the major role that the metastable argon atoms play via Penning ionization.

3.5. Effect of nitrogen on other ion intensities during voltage-on period

The addition of 1% nitrogen to the plasma had different effects on different ions in the spectra. All the sputtered analyte ion signals responded in a similar way, with attenuation factors in the range 5–30 (depending on distance) as demonstrated for $^{56}\text{Fe}^+$ and $^{52}\text{Cr}^+$ in Fig. 13. The addition of nitrogen also reduced the number of Ar^+ ions by factors of 5–13 (as expected by charge transfer collisions) and Ar_2^+ ions by factors of 2–13,

![Graph showing Fe ion signals as a function of sampling height above the cathode to show the effect of 1% nitrogen on the ionization of sputtered metal atoms. Ion signals measured at 4.9 ms, representing steady-state conditions. Pulse length: 5.0 ms, 25% duty cycle, 0.8-torr Ar, ~1.5-W peak power, Fe cathode.](image-url)
depending on distance, with the largest attenuation occurring at ~4–6 mm. The ArH⁺, H₃⁺ and Ar²⁺ signals were considerably more attenuated by the addition of nitrogen than all the other ions in the spectra.

The added nitrogen completely eliminated the H₃⁺ signal. ArH⁺ and Ar²⁺ signals were reduced by factors of 10–100, as shown in Fig. 14. These ions are obviously much more sensitive to the N₂ addition than Ar⁺, Ar₂⁺, or the other ions. This behavior would be consistent if the three ions in question required two excited or ionized argon atoms as precursors, and all the other attenuated ions only relied on one excited/ionized precursor. Under these circumstances, a decrease in the excited/ion states of argon would decrease the H₃⁺, ArH⁺ and Ar²⁺ ions to the square of the loss of the excited/ion states, but would reduce the other ions proportionally to the loss of excited/ion states.

The most probable population mechanism for populating the 27.63-eV ground state of Ar²⁺ is electron excitation.

\[
\text{Ar}^0 + e_{\text{fast}}^{-} \rightarrow \text{Ar}^{2+} + 3e_{\text{slow}}^{-}
\]

(7)

The vast reduction in the Ar²⁺ ions would require that the high-energy tail of the EEDF be drastically reduced by the addition of 1% nitrogen. Indeed, the ability for nitrogen to undergo inelastic collisions with electrons and to absorb the electron’s kinetic energy is well known [100–102]. Even at concentrations as low as 1% in argon, nitrogen

![Fig. 13. Attenuation factors for the steady-state signals of different ions vs. distance above the cathode in response to the addition of 1% nitrogen. Conditions given in Fig. 10.](image)

![Fig. 14. Attenuation factors for the steady-state signals of Ar²⁺ and ArH⁺ in response to the addition of 1% nitrogen. Conditions given in Fig. 10.](image)
greatly reduces the average energy of the EEDF. Two other energetically feasible reactions for the formation of doubly charged argon ions are given by the equations,

\[
\text{Ar}^{**} + \text{Ar}^{**} \rightarrow \text{Ar}^{2+} + \text{Ar}^0 + 2e^- \quad (8)
\]

\[
\text{Ar}^{**} + \text{Ar}^+ \rightarrow \text{Ar}^{2+} + \text{Ar}^0 + e^- \quad (9)
\]

where Ar** is an excited state of argon above 13.81 eV (8) or 11.9 eV (9), respectively. No reference to these reactions could be found in the literature. Reactions (8) and (9) both rely on two highly energetic states of argon to produce the doubly charged ion, and would consequently be sensitive to the square of a reduction in Ar**, as required.

Possible reactions leading to the formation of ArH are [12,103,104]

\[
\text{Ar}^{**} + \text{H}_2 \rightarrow \text{ArH}^+ + \text{H}^- \quad (10)
\]

\[
\text{Ar}^{**} + \text{H}_2 \rightarrow \text{ArH}^+ + \text{H}^- \quad (11)
\]

\[
\text{Ar}^{**} + \text{H} \rightarrow \text{ArH}^+ + e^- \quad (12)
\]

In order to be thermo-neutral, reactions (10) and (11) require total internal energies of 13.1 and 13.5 eV, respectively (neglecting kinetic energy effects) [75,105]. This would require an energy level above the 4s metastable states of argon. Reaction (12) can proceed if the excited state is one of the metastable states at 11.55 or 11.72 eV. The formation of H in reaction (12) can occur by a variety of reactions, including [103]

\[
\text{Ar}^m + \text{H}_2 \rightarrow \text{Ar}^0 + \text{OH} + \text{H} \quad (13)
\]

\[
\text{Ar}^+ + \text{H}_2 \rightarrow \text{ArH}^+ + \text{H} \quad (14)
\]

both of which are exothermic as written and require a highly-energetic precursor.

The dominant formation mechanism for H_3^+ is expected to be [103]

\[
\text{ArH}^+ + \text{H}_2 \rightarrow \text{Ar}^0 + \text{H}_3^+ \quad (15)
\]

\[
\text{ArH}^+ + \text{N}_2 \rightarrow \text{Ar}^0 + \text{N}_2\text{H}^+ \quad (16)
\]

\[
\text{H}_3^+ + \text{N}_2 \rightarrow \text{H}_2 + \text{N}_2\text{H}^+ \quad (17)
\]

that are presumably exothermic based on the appearance of large quantities of N_2H^+ in the spectra with nitrogen added. Reaction (16) should proceed at a rate similar to that for the CT reaction between Ar^+ and Fe^0, so the additional destruction channel for ArH^+ can only account for a ~5–13-fold reduction in signal. Again, this suggests that nitrogen is preventing the formation of ArH^+, as well as providing additional destruction channels.

The argon ions can be formed directly by electron ionization, or be electron ionization from the metastable states.

\[
\text{Ar}^0 + e^-_{\text{fast}} \rightarrow \text{Ar}^+ + 2e^-_{\text{slow}} \quad (18)
\]

\[
\text{Ar}^m + e^-_{\text{fast}} \rightarrow \text{Ar}^+ + 2e^-_{\text{slow}} \quad (19)
\]

The reduction of argon ions observed in Fig. 13 might be related to additional destruction mechanisms created by the added nitrogen, rather than inhibiting a production process. One such additional loss process induced by N_2 is the charge transfer reaction given in reaction (2). The reduction in the metal ion signals in the steady-state regime is undoubtedly related to the reductions in sputter yield and metastable states. The fact that the sputtering rate decreased by a factor of ~2, but the ionization efficiency decreased by a factor of 5–30, is testimony to the importance of PI in ionizing the sputtered atoms.

It is also possible that that the added nitrogen introduces additional destruction mechanisms for
Fig. 15. Selected ion signals as a function of time to show the effect of added nitrogen. Sampling height: 5 mm, 5.0-ms pulse length, 25% duty cycle, 0.8-torr Ar, ~1.5-W peak power, Fe cathode.

ArH⁺, H₂⁺ and Ar²⁺. If CT between Ar²⁺ and N₂ is a quantum-allowed process and occurred at the collision frequency, the rate for this reaction would be approximately twice as fast as the CT reaction between Ar⁺ and N₂ [106]. Based on this premise, the added nitrogen would reduce Ar²⁺ signal by factors of 10–26, depending on height above the cathode. That the attenuation factor is twice this large again indicates that the nitrogen must also be reducing the formation of Ar²⁺.

The preceding discussion shows that there are several mechanisms to explain the extreme attenuation rates of H₂⁺, ArH⁺, and Ar²⁺ compared to the other ion signals. The formation of these ions requires either very high-energy electrons (>27 eV), or at least two highly excited or ionized states of argon as precursors. Nitrogen is known to reduce the kinetic energy of electrons when added at 1% to argon plasmas, and is shown to reduce both the metastable states and the ion states of argon. The other ions are less affected by the addition of N₂ (metal ions, Ar⁺ and Ar⁺₂) because they rely on lower energy electrons and/or one excited state of argon. Consideration of additional loss channels created by the addition of nitrogen will contribute to the reduction in the discussed ion signals, but alone cannot account for the attenuation factors observed.

3.6. Effect of nitrogen on the ion intensities in the afterpeak time regime

The added nitrogen is shown to have a large effect on ion signals in the 4–5-ms time regime. At this time, the plasma is essentially in the steady state. Optical experiments show that when the voltage is terminated at the end of the 5-ms pulse, analyte ions (and argon ions) recombine. One might assume that the observed emissions from the sputtered metal atoms would signify a decrease in the analyte ions in the afterpeak period. That this is not the case has been demonstrated on numerous occasions [38–41,43]. Fig. 15 shows a typical response for various ions under normal operating conditions. The argon ion signal is not shown here because its temporal characteristics have already been discussed in detail (see discussion on Fig. 8). With no nitrogen added, the Fe⁺ and Cr⁺ ion signals decrease immediately following pulse termination, but quickly increase to a maximum at approximately 5.1 ms. The afterpeak maximum is noticeably larger than the steady-state
signal. After 5.1 ms the ion signals decay in a reasonably exponential manner. ArH$^+$ displays similar behavior, but the afterpeak maximum is smaller with respect to the steady-state value, and the decay rate is considerably faster. It is assumed that the faster decay rate is due to the faster recombination rate of the diatomic ArH$^+$, as opposed to the monatomic Fe$^+$ and Cr$^+$.

With 1% nitrogen added, the ArH$^+$ ion is severely quenched (as discussed above) and no evidence for afterpeak formation is observed. If the ArH$^+$ in the afterpeak were formed from Ar$^+$ precursors, the afterpeak signal for ArH$^+$ should scale with the steady-state signal of Ar$^+$. That this is not the case, coupled with the fact that the ArH$^+$ is severely quenched in the afterpeak is further evidence for neutral precursors to the formation of ArH$^+$, reactions (10)–(12) above.

After the addition of nitrogen, the afterpeaks are more delayed for Fe$^+$ and Cr$^+$, maximizing at ~5.3 ms, and are of approximately the same magnitude as the steady-state signals. The afterpeak ion signals are smaller than in pure argon, and are more delayed in time. These findings are entirely consistent with the emission experiments discussed earlier, namely, with added nitrogen, afterpeak emission intensities are reduced in intensity and delayed in time. Although somewhat counter-intuitive, these results demonstrate, unequivocally, that ionization and recombination of the sputtered metal atoms and ions are both enhanced in the afterpeak. These observations are rationalized if the recombination effects follow the ionization effects in time.

Metastable argon atoms, formed during the afterpeak, Penning ionize the sputtered metal atoms and increase the number of these metal ions. The sputtered metal ions then participate into CRC, occupying the highest energy levels most abundantly, and decaying radiatively to the ground state. The addition of nitrogen delays the thermalization of the electrons, which in turn delays the recombination of argon ions with electrons. This delays the appearance of metastable states, which delays the appearance of the Penning ionized metal ions.

Consistent with this model are some additional interesting observations. Figs. 16–18 show the effect of 1% nitrogen on the afterpeak signals of, respectively, the iron ion (determined by ToF-MS), iron recombination (determined by AE), and iron ion signals (determined by AA). In the pure argon discharge, afterpeak ion signals determined by MS and AA and afterpeak emission signals maximize
at approximately 5–6 mm above the cathode. Afterpeak signals in all cases display a steady, but small, decrease closer than 6 mm and larger decreases at distances greater than 6 mm. The addition of nitrogen prevents PI reactions from occurring and this diminishes the metal ion formation in the afterpeak, as observed by AA and ToF-MS. The ions are not available for recombination, so emissions from excited atom states are also diminished.

Because of the prolonged production of metal ions by PI compared to argon ions, one might also

Fig. 17. Emission intensity at 371.99 nm for the Fe I line as a function of distance to show the effect of 1% nitrogen on the afterpeak. Conditions given above.

Fig. 18. Iron ion absorbance at 259.9 nm as a function of distance above the cathode to show the effect of 1% nitrogen addition on the afterpeak. Absorption measurements taken at 5.5 ms.
Fig. 19. Comparison of the afterpeak emissions for Ar I and Fe I with no nitrogen added. Data collected at 4 mm above the cathode, 5.0-ms pulse length, 25% duty cycle, 0.8-torr Ar, \(\sim 1.5\)-W peak power, Fe cathode.

anticipate that the iron emissions should also be prolonged. The data illustrated in Fig. 19 show that this is indeed the case. The afterpeak for the Fe atom emission at 361.88 nm appears slightly later than the Ar atom emission at 811.5 nm, and maintains this maximum longer than the argon atom emission. While the decay rates are very similar after the afterpeak maximum, the Fe emissions do not reach a base-line level, as do the argon atom emissions. This behavior is not unique to these transitions, but is found for all Ar atom and Fe atom lines studied in this laboratory. Assuming that the two- or three-body recombination rates are not significantly different for Ar\(^+\) and Fe\(^+\), the prolonged emissions for the Fe atoms must be due to the continual formation of Fe ions by PI.

Using a power supply with a slower fall-time, similar results were also observed with a copper cathode. Fig. 20 shows that the emission from the copper atom lines is considerably more prolonged than the emission from the argon atom lines, indicating that the mechanisms discussed above are not unique to iron (indeed, chromium present in the iron cathode also showed similar AE and MS behavior to iron). The delayed responses of the Ar I and Cu I emissions, when the slower fall-time power supply was used, is also consistent with the proposed mechanism in the afterpeak. The slower fall time prevents the electrons from cooling as quickly and delays the onset of recombination. Notice, again, how the tailing on the Cu I emissions does not decay to zero, but is more prolonged than the Ar I emission. This asserts that the highly excited states of copper are continuing to emit long after electron excitation is a possible excitation mechanism, implying that PI followed by recombination is the most probable mechanism.

4. Conclusions

The addition of \(\sim 1\% \) of nitrogen to a 0.8-torr plasma has provided insight into the mechanisms of excitation and ionization in the PGD. Optical absorbance and emission measurements demonstrate the transfer of energy from excited argon atoms to nitrogen molecules during the voltage-on period, with a subsequent reduction in the number of metastable states of argon. This reduction in metastable atoms reduces the ionization of sput-
tered atoms during the voltage-on period, but does not significantly impact emissions from excited analyte atoms because the latter are created mostly via collisions with electrons.

Attenuation factors for ArH\(^+\) and Ar\(^{2+}\), are more than twice as great as for Ar\(^+\), indicating that these ions are either reliant upon two highly energetic precursors (both of which are attenuated by the added nitrogen), or are reliant on one energetic precursor and have an additional destruction pathway with nitrogen. Further study is required to determine the exact mechanisms in these conditions.

When the voltage is terminated in the ‘pure’ argon discharge, ToF-MS data and optical experiments show that argon ion recombination leads to an increase in metastable states. This, in-turn, leads to an increase in the propensity for Penning ionization. Metal ions and emissions (from recombining metal ions) are observed for several milliseconds after pulse termination. When nitrogen is added it prevents electrons from collisionally cooling in the afterpeak due to superelastic collisions with vibrationally excited states of N\(_2\), indicating that these ions are either reliant upon two highly energetic precursors (both of which are attenuated by the added nitrogen), or are reliant on one energetic precursor and have an additional destruction pathway with nitrogen. Further study is required to determine the exact mechanisms in these conditions.

The reduction in afterpeak emissions caused by the addition of nitrogen could provide a lower background environment for AAS and AFS experiments, while allowing the AAS and AFS measurements to be made closer in time to the voltage-off period. This would allow measurements to be made at a time of maximum sputtered atom density—as they will not have had time to diffuse away. Also, the ability for nitrogen to quickly remove argon ions and delay the onset for the production of sputtered analyte ions could be particularly useful for reducing the interference of discharge-gas species in time-gated MS measurements [37,38]. While nitrogen was intended to be used only as a diagnostic tool in these experiments, it turns out that controlled additions of nitrogen to PGDs might actually be highly beneficial for time-gated AAS, AFS [and laser-induced atomic fluorescence (LIAF)] and MS analytical methods.

References

[28] T.D. Nguyen, Rotational and vibrational distributions of N2 (C1Πu) excited by state-selected Ar(3P0) and Ar(3P0) metastable atoms, Chem. Phys. 70 (1983) 41–55.

[73] F.M. Penning, Physik 46 (1925) 225.

