*Extending Modules*, (with N.V. Dung, P.F. Smith, R. Wisbauer), Research Notes in Mathematics, Series**313**, Pitman, London, 1994.*Algebra and Its Applications*, (edited with S.K. Jain and S.R. Lo'pez-Permouth), AMS Contemporary Mathematics, Vol.**259**, 2000.*Algebra and Its Applications*, (edited with S.K. Jain and S.R. Lo'pez-Permouth), AMS Contemporary Mathematics, Vol.**419**, 2006.

**1974 - 1979**

**1.** Uber Ringe mit Minimalbedingung fur Hauptrechtsideale II, *Studia** Sc. Math. Hungar. *9(1974), 419-423.

**2.** Uber eine Klasse von linear kompakten Ringen, *Publ**. Math. *
*Debrecen*

**3.** Uber die Frage der Spaltbarkeit von MHR-Ringen, *Bull. Acad. Pol. Sc. *23 (1975), 135-138.

**4.** Uber Ringe mit Minimalbeidingung fur Hauptrechtsideale, *Acta** Math. Acad. Sc. Hungar.* 26 (1975), 245-250.

**5.** Uber artinschen Ringe, die noethersch sind, *Publ**. Math. *
*Debrecen*

**6.** Uber linksnoetherche Ringe, die linksartinsch sind, (with A. Kertesz), *Publ**. Math. *
*Debrecen*

**7.** Uber Ringe mit eingeschrankter Minimalbedingung hoherer Stufe fur Rechtsideale I, *Math. Nachr.* 71 (1976), 227-235.

**8.** Uber einen Satz von A. Kert esz, *Acta** Math. Acad. Sc. Hungar. *28 (1976), 73-75.

**9.** Uber eingeschr ankt regul are Ringe, (with A. Widiger), *Beitr**. **Alg**.** Geometr.* 5 (1976), 7-13.

**10.** Die Spaltbarkeit von MHR-Ringen, *Bull. Acad. Polon. Sci.* 25 (1977), 930-941.

**11.** Ein Analogon eines Satzes von F. Szasz, *Ann. Univ. Sc. Budapest E otv os Sect.** Math.* 20 (1977), 43-45.

**12.** Uber Ringe mit eingeschrankter Minimalbedingung hoherer Stufe fur Rechtsideale II, *Math. Nachr. *86 (1978), 291-307.

**13.** Uber Ringe mit eingeschrankter Minimalbedingung hoherer Stufe fur Rechtsideale III, (with A. Widiger), *Math.** Nachr.* 86 (1978), 309-331.

**14.** Uber Ringe mit eingeschr ankter Minimalbedingung hoherer Stufe fur Unterringe, (with A. Widiger), *Beitr**. **Alg**.** Geometr.** *7 (1978), 7-12.

**15.** Some conditions for the existence of an identity in a ring, *Ann. Univ. Sc. Budapest E otv os Sect. Math.* 22/23 (1979/80), 87-95.

**16.** Uber artinsche Ringe, *Math. Nachr.* 91 (1979), 117-126.

**17.** On the maximal regular ideal of a linearly compact ring, *Arch. Math.* 33 (1979), 232-234.

**18.** A note on artinian rings, *Arch. Math.* 33 (1979), 546-553.

**1980 - 1989**

**19.** Uber linear kompakte Ringe, *Acta** Math. Acad. Sc. Hungar.* 36 (1980), 1-5.

**20.** On the fissility of semiprimary rings, *Acta** Math. Acad. Sc. Hungar.* 43 (1983), 101-103.

**21.** Rings whose multiples are direct summands, *Math. J. **Okayama** **Univ.** *25 (1983), 99-101.

**22.** On modified chain conditions, *Acta** Math. **Vietnam**.* 9 (1984), 147-156.

**23.** Some results on linearly compact rings, *Arch. Math.* 44 (1985), 39-47.

**24.** On rings with modified chain conditions, *Studia** Sc. Math. Hungar.* 20 (1985), 59-61.

**25.** Some characterizations of hereditarily artinian rings,
*Glasgow** Math. J.* 28 (1986), 21-23.

**26.** Some results on rings with chain conditions, *Math. Z. *191 (1986), 43-52.

**27.** On the cardinality of ideals in artinian rings, (with N.V. Dung), *Arch. Math.* 51 (1988), 213-216.

**28.** A characterization of artinian rings, (with N.V. Dung),
*Glasgow** Math. J.* 30 (1988), 67-73.

**29.** A note on rings with chain conditions, *Acta** Math. Hungar. *51 (1988), 65-70.

**30.** On rings with restricted minimum condition, (with N.V. Dung), *Arch. Math. *51 (1988), 313-326.

**31.** Characterizing rings by their modules, (with P.F. Smith), *Proc. 31st Semester " Classical Algebraic structure",* (1988),

**32.** Rings characterized by cyclic modules, (with P. Dan),
*Glasgow** Math. J.* 31 (1989), 251-256.

**33.** Quasi-injective modules with ACC or DCC on essential submodules, (with N.V. Dung, R. Wisbauer), *Arch. Math.* 53 (1989), 252-255.

**34.** Rings characterized by their right ideals or cyclic modules, (with N.V. Dung, P.F. Smith), *Proc. Edinburgh Math. Soc.* 32 (1989), 356-362.

**1990 - 1999**

**35.** A generalization of PCI rings, *Comm. Algebra* 18 (1990), 607-614.

**36.** Rings with ACC on essential right ideals, *Math. Japonica *35 (1990), 707-712.

**37.** A characterization of noetherian modules, (with N.V. Dung, P.F. Smith), *Quart. J. Math. *
*Oxford*

**38.** A characterization of rings with Krull dimension, (with N.V. Dung, P.F. Smith), *J. Algebra* 132 (1990), 104-112.

**39.** A note on GV-modules with Krull dimension, (with P.F. Smith, R. Wisbauer),
*Glasgow** Math. J.* 32 (1990), 389-390.

**40.** A result on artinian rings, (with P. Dan), *Math. Japonica* 35 (1990), 699-702.

**41.** Rings with restricted injective conditions, (with N.V. Dung), *Arch. Math. *54 (1990), 539-548.

**42.** Some rings characterized by their modules, (with P.F. Smith), *Comm. Algebra* 18 (1990), 1971-1988.

**43.** A characterization of locally artinian modules, (with R. Wisbauer), *J. Algebra* 132 (1990), 287-293.

**44.** On serial noetherian rings, (with P. Dan), *Arch. Math.* 56 (1991), 552-558.

**45.** On modules with finite uniform and Krull dimension, (with N.V. Dung, R. Wisbauer), *Arch. Math.* 57 (1991), 122-132.

**46.** Co-faithful modules and generators, (with J. Clark), *Vietnam J. Math.* 19 (1991), 4-17.

**47.** Self-projective modules with $\pi$-injective factor modules, (with R. Wisbauer), *J. Algebra* 153 (1992), 13-21.

**48.** A structure theorem on SI-modules, (with R. Wisbauer),
*Glasgow** Math. J.* 34 (1992), 83-89.

**49.** Some characterizations of right co-H-rings, (with P. Dan), *Math. J. **Okayama** **Univ.**,* 34 (1992), 165-174.

**50.** When is a self-injective semiperfect ring quasi-Frobenius?, (with J. Clark), *J. Algebra,* 165 (1994), 531-542.

**51.** A note on perfect self-injective rings, (with J. Clark), *Quart. J. Math. *
*Oxford**,* 45 (2) (1994), 13-17.

**52.** Some results on SI-rings, (with H.K. Kim, *J. Algebra*, 174 (1995), 39-52.

**53.** Rings characterized by semiprimitive modules, (with Y. Hirano, *Bull. Australian Math. Soc.*, 52 (1995), 107-116.

**54.** A right continuous right weakly SI-ring is semisimple, (with N.V. Sanh), *Bull. Australian Math.* Soc.51 (1995), 479-488.

**55.** A right countably sigma-CS ring with ACC or DCC on projective principal right ideals is left artinian and QF-3, *Trans. Amer. Math. Soc.*, 347 (1995), 3131-3139.

**56.** On artinian SC-rings, (with M.F. Yousif), *Comm. Algebra* 23 (12) (1995), 4693-4699.

**57.** A characterization of noetherian rings by cyclic modules, *Proc. Edinburgh Math. Soc.* 39 (1996), 253-262.

**58.** A note on quasi-Frobenius rings, (with N.S. Tung), *Proc. Amer. Math. Soc.* 124 (1996), 371-375.

**59.** On weakly injective continuous modules, (with S.K. Jain, S.R. Lopez-Permouth), *Proc. International Conference on Abelian Groups and Modules at Colorado Springs*, Marcel Dekker, Inc.,

**60.** Rings whose finitely generated modules are extending, (with S.T. Rizvi, M.F. Yousif), *J. Pure Appl. Algebra*, 111 (1996), 325-328.

**61.** On rings whose prime radical contains all nilpotent elements of index two, (with Y. Hirano, *Arch. Math.*, 66 (1996), 360-365.

**62.** When is a simple ring noetherian?, (with S.K. Jain, S.R. Lopez-Permouth), *J. Algebra*, 184 (1996), 786-794.

**63.** On a class of non-noetherian V-rings, (with S.K. Jain, S.R. Lopez-Permouth), *Comm. Algebra*, 24(9) (1996), 2839-2850.

**64.** An approach to Boyle's Conjecture, (with S.T. Rizvi), *Proc. Edinburgh Math. Soc.*, 40 (1997), 267-273.

**65.** Rings over which direct sums of CS modules are CS, (with B.J. M uller), *Advances in Ring Theory*, Birkhauser-Verlag, Stuttgart-New York, 1997, 151-159.

**2000 - present**

**66.** On some classes of artinian rings, (with S.T. Rizvi), *J. Algebra*, 223 (2000), 133-153.

**67.** On the symmetry of Goldie and CS conditions for prime rings, (with S.K. Jain, S.R. Lopez-Permouth), *Proc. Amer. Math. Soc.*, 128 (2000), 3153-3157.

**68.** Rings characterized by direct sums of CS modules, (with S.K. Jain, S.R. Lopez-Permouth), *Comm. Algebra*, 28 (2000), 4219-4222.

**69.** On countably sigma-CS rings, (with S.T. Rizvi), *Algebra and its Applications,* Narosa Publishing House, New Delhi, Chennai, Mumbai, Kolkata (2001), 119-128.

**70.** Some remarks on CS modules and SI rings, *Bull. Australian Math. Soc.*, 65 (2002), 461-466.

**71.** When self-injective rings are QF: A report on a problem, (with C. Faith), *J. Algebra & Applications*, 1 (2002), 75-105.

**72.** Structure of some noetherian SI-rings, *J. Algebra*, 254 (2002), 362-374.

**73.** Goldie rings of uniform dimension at least
two and with all one-sided ideals CS are semihereditary, (with S.K. Jain, S.R. Lopez-Permouth), *Comm. Algebra,*
31 (11) (2003), 5355-5360.

**74.** Some results on self-injective rings and sigma-CS rings, (with H.Q. Dinh), *Comm. Algebra,*
31 (12) (2003), 6063-6077.

**75.** When are cyclic singular modules over a simple ring injective?, (with S.K. Jain, S.R. Lopez-Permouth), *J. Algebra*,
263 (2003), 188-192.

**76.** A decomposition theorem for p*-semisimple rings, (with H.Q. Dinh), *J. Pure Appl. Algebra,*
186 (2004), 139-149.

**77.** Rings characterized by CS condition of their modules, *Trends in Rings and Modules*,
Anamaya Publisher, New Delhi (2005), 41-46.

**78.** Characterizing rings by a direct decomposition property of their modules, (with
S.T. Rizvi), *J. Australian Math. Soc.*,
80 (2006), 359-366.

**79.** Extending the property of a maximal right ideal, (with
G.F. Birkenmeier, J.Y. Kim, J.K. Park), *Algebra Colloq.*,
13 (2006), 163-172.

**80.** An affirmative answer for a question on noetherian rings, (with
S.T. Rizvi), *J. Algebra & Appl.*, 7 (2008), 47-59.

**81.** The symmetry of CS condition on one-sided ideals in a prime ring, *J. Pure Appl. Algebra*, 213 (2008), 9-13.

**82.** A study on uniform one-sided ideals in simple rings, (with J. Clark), *Glasgow Math. J.*, 49 (2007), 480-495.

**83.** Simple rings with injectivity conditions on one-sided ideals, (with J. Clark), *Bull. Australian. Math. Soc.*, 76 (2007), 315-320.

**84.** On the CS condition and rings with chain conditions, (with D.D. Tai and L.V. An), AMS Contemporary Math. Series (2009, to appear).