I. RING THEORY
First review before Midterm 1

1. Definition, and Examples

Definition 1.1. A non-empty set \(R \) is called a ring if there are two binary operations "\(+\)" and "\(\cdot\)" defined in \(R \) such that:

(i) \((R, +)\) is an abelian group,
(ii) \((R, \cdot)\) is a semigroup,
and the following distributive laws must be satisfied:
(iii) \((a + b)c = ac + bc\) and \(c(a + b) = ca + cb\) for \(\forall a, b, c \in R\).

In addition, if there is an element \(e \in R \) such that \(ea = ae = a \) for \(\forall a \in R\), then \(R \) is called a ring with identity. In this case, \(e \) is the identity of \(R \). We always denote the identity of a ring (if it exists) by the number 1.

Definition 1.2. Let \(R \) be a ring. If \(ab = ba \) for all \(a, b \in R \), then \(R \) is called a commutative rings.

Remarks 1.3. (1) There are rings in which there exist nonzero elements \(a, b \) with \(ab = 0 \). To see this consider the \(2 \times 2 \) matrix ring \(M_2(\mathbb{R}) \) over the real number field \(\mathbb{R} \); or the ring \(\mathbb{Z}_m \) where \(m \) is not a prime number (for example \(m = 4, 6, 8, 9, \ldots \)).

(2) For \(n > 1 \), the ring \(M_n(\mathbb{R}) \) is never commutative.

Remark 1.4. If a ring \(R \) has an identity 1, then the \(n \times n \) matrix ring \(M_n(R) \) over \(R \) has also an identity, and this is the matrix \((a_{ij})\) where \(a_{ii} = 1 \) (1 \(\leq i \leq n \)) and \(a_{ij} = 0 \) for all \(i \neq j \).

Remark 1.5. For any element \(a \) of a ring \(R \), and any positive integers \(m, n \),
\(a^m = a \cdot a \cdots a \) (\(m \) times), \(a^m \cdot a^n = a^{m+n} \), \((a^m)^n = a^{mn} \). In general, the negative power of an element in a ring does not exist, unless that element has a multiplicative inverse.

Definition 1.6. (i) Let \(R \) be a ring, and \(a \in R \). Then \(a \) is called a nilpotent element of \(R \) if there is a positive integer \(m \) such that \(a^m = 0 \).
(ii) A ring \(R \) is called a nil ring if every element of \(R \) is nilpotent.
(iii) A ring \(R \) is called a nilpotent ring if \(R^k = 0 \) for some positive integer \(k \).

Remark 1.7. (a) A ring with identity is never nil or nilpotent, because the identity is not nilpotent.
(b) There are nil rings that are not nilpotent.

Definition 1.8. An element f of a ring R is called an idempotent element (or an idempotent) if $f^2 = f$.

2. Subrings

Definition 2.1. Let A be a non-empty subset of a ring R. Then A is called a subring of R if the following two conditions are satisfied:

1. For all $a, b \in A$, $a - b \in A$;
2. For all $a, b \in A$, $ab \in A$.

Example 2.2. Let R be a commutative ring, and N be the set of all nilpotent elements of R. Then N is a subring of R.

Remarks 2.3. (1) The statement in Example 2.2 is no more correct if R is not commutative. For example, let $R = M_2(\mathbb{R})$, the 2×2 matrix ring over \mathbb{R}. We know that for example, for $\alpha = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$ and $\beta = \begin{bmatrix} 0 & 0 \\ -4 & 0 \end{bmatrix}$, then α and β are in N (= the set of all nilpotent elements of R). But $\alpha - \beta = \begin{bmatrix} 0 & 2 \\ 4 & 0 \end{bmatrix}$ is not nilpotent (prove it?), and hence not in N.

(2) In general, for a ring R with $R^2 \neq 0$ and for $n > 1$, any $n \times n$ matrix ring over R is never commutative.

Example 2.4. Any subgroup of $(\mathbb{Z}, +)$ is a subring of the ring \mathbb{Z}. Moreover, for any positive integer m, any additive subgroup of \mathbb{Z}_m is a subring of the ring \mathbb{Z}_m.

Remark 2.5. In contrast to Example 2.4, there are rings R in which not any additive group of $(R, +)$ is a subring of the ring R. To see that, we take the ring $R = M_2(\mathbb{R})$ and let $A = \{ \begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix} | a, b \in \mathbb{R} \}$. Then $(A, +)$ is a subgroup of $(R, +)$ (prove this!), but A is not a subring of R, because, for example, if we take an element $\alpha = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} \in A$, then $\alpha^2 \not\in A$. (Check this!)

Definitions 2.6. (1) Let R be a ring. If there is a positive integer m such that $mR = 0$, then the smallest number among such positive integers is defined to be the characteristic of the ring R.

(2) If for all positive integers m, mR is non-zero, then we say that the characteristic of R is ZERO.

Example 2.7. The characteristic of \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} is 0. But for any $n > 1$, the characteristic of \mathbb{Z}_n is n, because n is the smallest positive integer for which $n\mathbb{Z}_n = \overline{0}$.
3. Ideals

Definition 3.1. Let A be a non-empty subset of a ring R. Then A is called an ideal of R if the following two conditions are satisfied:

1. For all $a, b \in A$, $a - b \in A$;
2. For all $a \in A$, and all $r \in R$, $ra \in A$ and $ar \in A$.

Examples 3.2. (1) The set N of all nilpotent elements in a commutative ring R is an ideal of R (prove it!).

(2) Any subgroup of $(\mathbb{Z}, +)$ is an ideal of the ring \mathbb{Z}. Moreover, for any positive integer m, any additive subgroup of \mathbb{Z}_m is an ideal of the ring \mathbb{Z}_m.

(3) Let $R = M_2(\mathbb{R})$ and let $A = \left\{ \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix} | a \in \mathbb{R} \right\}$. Then A is a subring of R (check it), but A is not an ideal of R. To see this take $\alpha = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \in A$ and $\beta = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \in R$, then $\alpha \beta = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \notin A$.

Definitions 3.3. (1) Let R be a ring with identity 1. Then an element $u \in R$ is called a unit of R, if there exists an element $v \in R$ such that $uv = vu = 1$.

(2) A ring R with identity 1 is called a DIVISION RING if every nonzero element of R is a unit of R. A commutative division ring is said to be a FIELD.

(3) A field P is called a prime field, if P has exactly two subfield: (0) and P itself.

Remarks 3.4. (1) Any matrix $\alpha \in M_n(\mathbb{R})$ with $\det(\alpha) \neq 0$ is a unit of $M_n(\mathbb{R})$.

(2) Let R be a ring with identity 1, and let A be an ideal of R. Then $A = R$ if and only if A contains a unit of R (prove it!).

(3) Any division ring has exactly two distinct ideals, namely (0) and R itself.

(4) But a ring with exactly two distinct ideals is not necessarily a division ring. To see that take $R = M_2(\mathbb{R})$. This matrix ring has exactly two distinct ideals but is not a division ring (prove it!).

(5) Let R be a commutative ring with $R^2 \neq 0$. Then R is a field \iff R has exactly two distinct ideals.

(6) Let R be a commutative ring. Then R is either a field, or a ring with p elements (p a prime number) and $R^2 = 0 \iff R$ has exactly two distinct ideals.

(7) Let R be a division ring. Then for each positive integer m, either $mR = R$, or $mR = 0$ (prove it!). This implies that the characteristic of a division ring is either zero or a prime number.
(7a) If the characteristic of the division ring R is 0, then R contains a prime field K that is isomorphic to the field \mathbb{Q}.

(7b) If the characteristic of the division ring R is a prime number p, then R contains a prime field K with $K \cong \mathbb{Z}_p$.

From this we get the following theorem.

Theorem 3.5. Every division ring R contains a prime field K such that either $K \cong \mathbb{Q}$ or $K \cong \mathbb{Z}_p$.

4. Homomorphisms of Rings

Definitions 4.1. (1) Let $\varphi : R \to S$ be a map from a ring R into a ring S. Then φ is called a (ring) homomorphism if the following two conditions are satisfied:

(a) $\varphi(a + b) = \varphi(a) + \varphi(b)$, $\forall a, b \in R$;

(b) $\varphi(ab) = \varphi(a)\varphi(b)$, $\forall a, b \in R$.

(2) The subset $\{x \in R | \varphi(x) = 0\}$ is called the kernel of φ, and is denoted by $\text{Ker}(\varphi)$.

(3) We set $\text{Im}(\varphi) = \varphi(R)$, the image of R by φ.

(4) The homomorphism φ is called an epimorphism (or an onto homomorphism) if $\varphi(R) = S$.

(5) φ is a monomorphism if φ is 1-1.

(6) φ is called an isomorphism if φ is 1-1 and onto. In this case, we say that R is isomorphic to S, and denote this situation by $R \cong S$.

Property 4.2. Let $\varphi : R \to S$ be a homomorphism then:

(1) $\text{Ker}(\varphi)$ is an ideal of R, and $\text{Im}(\varphi)$ is a subring of S. Moreover $\text{Im}(\varphi)$ is called the homomorphic image of R under φ.

(2) It holds $\text{Im}(\varphi) \cong R/\text{Ker}(\varphi)$.

(3) From (2) we see that there is an 1-1 correspondence between the set of ideals of a ring R and the homomorphic images of R. Precisely: Let $A \subseteq R$ be an ideal, then the map $f : x \mapsto x + A$ for all $x \in R$ is a homomorphism of R onto R/A (prove it!). Conversely, if g is a homomorphism of the ring R, then g determines an ideal of R, namely $\text{Ker}(g)$, and $g(R) \cong R/\text{Ker}(g)$.

(4) If A is an ideal and B is a subring of R. Then the image of B in R/A is $(B + A)/A$. As rings we have $(B + A)/A \cong B/(B \cap A)$.

(5) If A, B are ideals of R with $A \subseteq B$, then $(R/A)/(B/A) \cong R/B$.

Example 4.3. (1) Every division ring has only two distinct homomorphic images.

(2) Every homomorphic image of \mathbb{Z} has the form \mathbb{Z}_m where $\mathbb{Z}_m = \mathbb{Z}/m\mathbb{Z}$ ($m = 0, 1, \ldots$).

(3) Let $f : \mathbb{Z} \to \mathbb{Z}$ be a homomorphism, then either $f(x) = 0$ for all $x \in \mathbb{Z}$, or $f(x) = x$ for all $x \in \mathbb{Z}$ (prove it!). This means there are exactly two distinct homomorphisms from \mathbb{Z} to \mathbb{Z}.

(4) For \mathbb{Z}_m, the number of distinct divisors of $m = \text{the number of distinct ideals of } \mathbb{Z}_m = \text{the number of distinct homomorphic images of } \mathbb{Z}_m$. (Prove it!)

5. Direct sums

Let X and Y be subsets of a ring R. Then the sum $X + Y$ and the product XY are defined as follows:

$$X + Y = \{x + y \mid \forall x \in X, \forall y \in Y\}; \quad XY = \{\sum_{finite} x_iy_i \mid x_i \in X, \; y_i \in Y\}.$$

Definitions 5.1. Let R be a ring containing ideals A_1, A_2, \ldots, A_n. Then we say that R is a direct sum of A_1, A_2, \ldots, A_n, and denote this by $R = A_1 \oplus \cdots \oplus A_n$, or $R = \bigoplus_{i=1}^n A_i$, if the following two conditions are satisfied:

1. $R = A_1 + \cdots + A_n$.
2. $A_i \cap (A_1 + \cdots + A_{i-1} + A_{i+1} + \cdots + A_n) = 0$ for $i = 1, 2, \ldots, n$.

Property 5.2. (1) Let A, B be ideals in a ring R. Then $AB \subseteq A \cap B$. In addition, if $A \cap B = 0$, then $AB = BA = 0$.

(2) If $R = A_1 \oplus \cdots \oplus A_n$, then every element $a \in R$ has a unique representation as the sum $a = \sum_{i=1}^n a_i$ where each $a_i \in A_i$.

(3) For $R = A_1 \oplus \cdots \oplus A_n$ denote by π_i the projection of R onto A_i, where for each $a \in R$, $a = \sum_{i=1}^n a_i$ ($a_i \in A_i$) we set $\pi_i(a) = a_i$. Because of the uniqueness of the representation of a (see (3)), π is a map. Then π_i is a homomorphism (of R onto A_i) (why?). It is easy to see that $\text{Ker}(\pi) = \bigoplus_{j=1, j\neq i}^n A_j$. Thus $R/(\bigoplus_{j=1, j\neq i}^n A_j) \cong A_i$.

(4) If R has an identity 1 and $R = A_1 \oplus \cdots \oplus A_n$, then $1 = \sum_{i=1}^n e_i$ where e_i is the identity of A_i. Moreover, in this case if C is an ideal of R, then $C = \bigoplus_{i=1}^n (A_i \cap C)$.

(5) Under the assumptions of (5) we obtain $R/C \cong \bigoplus_{i=1}^n [A_i/(A_i \cap C)]$.

(6) For a ring S, we denote by $M_k(S)$ the ring of all $k \times k$ matrices over S. If $R = A_1 \oplus \cdots \oplus A_n$, then $M_k(R) = M_k(A_1) \oplus \cdots \oplus M_k(A_n)$ (prove it!). Similarly it holds for the polynomial ring over R, i.e., we have $R[x] = A_1[x] \oplus \cdots \oplus A_n[x]$.

(7) If $R = A_1 \oplus \cdots \oplus A_n$, then $R/A_i \cong \bigoplus_{j=1, j\neq i}^n A_j$.
(8) For the ring \(\mathbb{Z}_m \) it is easy to see a decomposition of \(\mathbb{Z}_m \). Namely, \(m = p_1^{m_1} \cdots p_k^{m_k} \) where the \(p_i \)'s are distinct primes and each \(m_i \) is a positive integer, then \(\mathbb{Z}_m \cong \bigoplus_{i=1}^{k} \mathbb{Z}_{p_i^{m_i}} \).

For example if \(m = 6 \), then since \(6 = 2 \cdot 3 \), we have \(\mathbb{Z}_6 = \{0, 3\} \oplus \{\overline{0}, \overline{3}\} \cong \mathbb{Z}_2 \oplus \mathbb{Z}_3 \).

6. Maximal and Prime Ideals

Definitions 6.1. (1) Let \(M \) be a proper ideal of a ring \(R \). Then \(M \) is called a maximal ideal of \(R \) if for any ideal \(A \) of \(R \), \(M \subseteq A \subseteq R \) implies either \(A = M \) or \(A = R \).

(2) An ideal \(P \) of a ring \(R \) is called a prime ideal of \(R \) if for any ideals \(A \), \(B \) of \(R \), the relation \(AB \subseteq P \) implies either \(A \subseteq P \) or \(B \subseteq P \).

(3) A ring \(R \) is called a prime ring if \((0) \) is a prime ideal of \(R \).

Property 6.2. (1) Let \(R \) be a ring with identity. Then every maximal ideal of \(R \) is prime. But the converse is not true in general, i.e., there are prime ideals of \(R \) that are not maximal.

(2) If \(R \) is a commutative ring with identity and \(M \) is a maximal ideal of \(R \), then \(R/M \) is a field.

(3) For any prime number \(p \), \(p\mathbb{Z} \) is a maximal ideal of \(\mathbb{Z} \). Every nonzero prime ideal of \(\mathbb{Z} \) has the form \(p\mathbb{Z} \) for some prime number \(p \). Notice that \((0) \) is also a prime ideal of \(\mathbb{Z} \).

(4) Let \(K \) be a field, and \(K[x] \) be the polynomial ring over \(K \).

(4a) A non-constant polynomial \(f(x) \in K[x] \) is defined to be irreducible if whenever \(f(x) = f_1(x)f_2(x) \), (\(f_i(x) \in K[x] \)) then either \(f_1(x) \in K \) or \(f_2(x) \in K \).

(4b) Every ideal \(A \) of \(K[x] \) is principal, i.e., \(A \) is generated by an element of \(K[x] \). \(A \) is a maximal ideal of \(K[x] \) if and only if \(A = f(x)K[x] \) for some irreducible polynomial \(f(x) \in K[x] \).

(4c) From (2) and (4b) it follows that \(K[x]/(g(x)) \) is a field if and only if \(g(x) \) is an irreducible polynomial in \(K[x] \). In particular, \(\mathbb{R}[x]/(x^2 + 1) \) is a field, and it can be shown that \(\mathbb{R}[x]/(x^2 + 1) \cong \mathbb{C} \). One can find many factor rings of \(\mathbb{R}[x] \) that are fields. For example \(\mathbb{R}[x]/(x^2 + x + 1) \), or \(\mathbb{R}[x]/(x^2 - x + 1) \) are also fields (why?).

(5) Let \(K \) be a field, and let \(f(x) \in K[x] \). An element \(\alpha \in K \) (or \(\alpha \) is in some larger field \(L \) containing \(K \)) is called a root of \(f(x) \) if \(f(\alpha) = 0 \). A field \(K \) is called algebraically closed, if every non-constant polynomial of \(K[x] \) has a root in \(K \).

(6) We know that every non-constant polynomial of \(\mathbb{C}[x] \) has all roots in \(\mathbb{C} \). Hence every irreducible polynomial of \(\mathbb{C}[x] \) has degree 1, i.e., in \(\mathbb{C}[x] \) only polynomials of the form \(ax + b \) (\(a, b \in \mathbb{C}, \ a \neq 0 \)) are irreducible. Hence \(\mathbb{C} \) is an algebraically closed field.
(7) Division algorithm in $K[x]$ where K is a field: Let $f(x), g(x) \in K[x]$ such that $\deg(g(x)) \geq 1$. Then there exist $k(x), r(x) \in K[x]$ such that

$$f(x) = k(x)g(x) + r(x),$$

where either $r(x) = 0$ or $0 \leq \deg(r(x)) < \deg(g(x))$. Using this one can prove, for example, (4b) easily.

(8) There are some criteria of finding out the irreducibility of some types of polynomials in $\mathbb{Q}[x]$. However we don’t discuss these here.

Next part will be on Module Theory!