Solutions of a homogeneous linear system

Let \(AX = 0 \) be a linear system of \(m \) homogeneous equations in \(n \) unknown. Let

\[
X = \begin{bmatrix}
x_1 \\
\vdots \\
x_n
\end{bmatrix},
\]

and let \(C_1, C_2, \ldots, C_n \) be columns of \(A \). Then this homogeneous linear system (= homogeneous LS) can be written as

\[
[C_1 \ C_2 \ \ldots \ C_n] \begin{bmatrix}
x_1 \\
\vdots \\
x_n
\end{bmatrix} = \begin{bmatrix}
0 \\
\vdots \\
0
\end{bmatrix}_{m \times 1} \iff x_1 C_1 + \cdots + x_n C_n = 0.
\]

Let \(C(A) \) be the column space of \(A \), that means \(C(A) \) is generated by all the columns of \(A \), in symbol: \(C(A) = \langle C_1, C_2, \ldots, C_n \rangle \). Without loss of generality, we can assume that \(\{C_1, C_2, \ldots, C_r\} \) is a maximal set of linearly independent columns. Hence \(\{C_1, C_2, \ldots, C_r\} \) is a basis of \(C(A) \). It follows that each \(C_i \), \((r+1 \leq i \leq n)\) is a linear combination of \(C_1, C_2, \ldots, C_r \), that is:

\[
(*) \quad C_i = \alpha_1^{(i)} C_1 + \cdots + \alpha_r^{(i)} C_r \iff \alpha_1^{(i)} C_1 + \cdots + \alpha_r^{(i)} C_r - C_i = 0
\]

where \(r+1 \leq i \leq n \) and \(\alpha_j^{(i)} \in \mathbb{R} \). Note that this representation is unique. Put

\[
U_{r+1} = \begin{bmatrix}
\alpha_1^{(r+1)} \\
\vdots \\
\alpha_r^{(r+1)} \\
-1 \\
0 \\
\vdots \\
0
\end{bmatrix}, \quad U_{r+2} = \begin{bmatrix}
\alpha_1^{(r+2)} \\
\vdots \\
\alpha_r^{(r+2)} \\
0 \\
-1 \\
0 \\
\vdots \\
0
\end{bmatrix}, \quad \cdots, \quad U_n = \begin{bmatrix}
\alpha_1^{(n)} \\
\vdots \\
\alpha_r^{(n)} \\
0 \\
\vdots \\
0 \\
-1
\end{bmatrix}.
\]

Then from \((*)\) we see that these \(U_i \) are solutions of the homogeneous LS. Moreover the following theorem holds.

Theorem. Let \(N(A) \) be the collection of all solutions of the above homogeneous linear system \(AX = 0 \). Then \(N(A) \) is a subspace of \(\mathbb{R}^n \), and \(\{U_{r+1}, \ldots, U_n\} \) is a basis of \(N(A) \). Consequently, every solution of this homogeneous LS has the form \(X = \lambda_{r+1} U_{r+1} + \cdots + \lambda_n U_n \) where \(\lambda_j \) are any real numbers.