MATH 163A, Fall Quarter 2001, MIDTERM 3

Student's Name (in capital letters):

Show all your work to get full credit. No work will amount to no credit. Circle your final answers.

1. Find the absolute maximum, absolute minimum of each function on a given closed interval. (The use of a graphic calculator is not allowed.)

 (a) (3 points) \(f(x) = x^4 - 2x^2 \) on \([-1, 2]\).

 \[f'(x) = 4x^3 - 4x \] \[f'(x) = 0 \Rightarrow 4x^3 - 4x = 0 \Rightarrow 4x(x^2 - 1) = 0 \] \[\Rightarrow x = 0, \quad x = \pm 1 \quad \text{all are in } [-1, 2]. \text{ Hence} \]

 \[f(-1) = -1 \quad \text{abs. min} \]
 \[f(1) = -1 \quad 4 \]
 \[f(0) = 0 \]
 \[f(2) = 16 - 8 = 8 \quad \text{abs. max} \]

 (b) (4 points) \(f(x) = x^3 - 3x^2 - 9x + 1 \) on \([-2, 4]\).

 \[f'(x) = 3x^2 - 6x - 9 \Rightarrow f'(x) = 0 \Rightarrow x^2 - 2x - 3 = 0 \Rightarrow x = -1, 3 \]

 Hence:

 \[f(-2) = -1 \]
 \[f(-1) = 6 \quad \text{absolute max.} \]
 \[f(3) = -26 \quad 4 \quad \text{abs. min.} \]
 \[f(4) = -19 \]

2. Find nonnegative numbers \(x, y \) satisfying \(2x + y = 150 \) such that the product \(P = x^2y \) is maximum, by doing the following steps:

 (a) (1 point) Solve for \(y \) from \(2x + y = 150 \).

 \[y = 150 - 2x \]
(b) (1 points) Substitute \(y \) (found in part (a)) in the function \(P = x^2y \) to get a function \(P(x) \) depending only on \(x \).

\[
P'(x) = x^2(150 - 2x) = x^2 150 - 2x^3
\]

(c) (4 points) Find the closed interval for \(x \), and maximize the function \(P(x) \) (this means, find the absolute maximum of \(P(x) \) on the closed interval you just found for \(x \)).

\[
x \geq 0; \quad 150 - 2x \geq 0 \quad \Rightarrow \quad 150 \leq 2x \quad \Rightarrow \quad 75 \leq x, \quad \text{interval is:} \quad [0, 75]
\]

\[
P'(x) = 300x - 6x^2 \quad \Rightarrow \quad p'(x) = 0 \quad \text{gives} \quad 6x(50 - x) = 0
\]

\[
\Rightarrow \quad x = 0, \quad x = 50
\]

\[
P(50) = 50^2(150 - 100) = 50^3 = 125,000 \quad \text{abs. max}
\]

Answer: when \(x = 50 \), \(y = 150 - 2x = 50 \), the product \(x^2y \) will be maximum.

3. Let \(f(x) = x^3 - 6x^2 \) be a given function. Do the following:

(a) (1 points) Find \(y \)-intercept.

\[
f(0) = 0
\]

(b) (3 points) Find \(x \)-intercepts.

\[
x^3 - 6x^2 = 0 \quad \Rightarrow \quad x^2(x - 6) = 0 \quad \Rightarrow \quad x = 0, \quad x = 6
\]
(c) (1 point) Find \(f'(x) \).
\[
\frac{d}{dx}(x^3 - 12x) = 3x^2 - 12x
\]

(d) (3 points) Find all critical numbers of \(f(x) \)
\[
3x^2 - 12x = 0 \implies 3x(x - 4) = 0, \quad x = 0, x = 4
\]

Make a sign chart for \(f'(x) \) to find out:

(e) (4 points) The intervals where \(f(x) \) is increasing, where it is decreasing.

(f) (3 points) Any local maximum, local minimum (give the values of them).
\[
\text{Local max} = f(0) = 0 \\
\text{local min} = f(4) = 64 - 6(16) = 64 - 96 = -32
\]

(h) (2 point) Find \(f''(x) \), and find all numbers which make \(f''(x) \) equal zero.
\[
f''(x) = 6x - 12, \quad f''(x) = 0 \implies 6x - 12 = 0 \\
\Rightarrow x = 2.
\]
Make a sign chart for $f''(x)$ to find out:

(i) (3 points) Intervals where $f(x)$ is concave up, where it is concave down.

(k) (3 points) All inflection points.

<table>
<thead>
<tr>
<th>x</th>
<th>$f''(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$- - - - 2$</td>
</tr>
<tr>
<td></td>
<td>$0 + + + +$</td>
</tr>
</tbody>
</table>

Inflection point $= (2, f(2)) = (2, -16)$

(l) (4 points) Use all information above to sketch the graph of $f(x)$. Attn: The use of a graphic calculator is not allowed.