Autoimmunity

K.J. Goodrum
2005

Autoimmunity

- Immune recognition and injury of self tissues (autoimmunity) results from a loss of self tolerance.

Self Tolerance

- Tolerance to self is acquired by clonal deletion or inactivation of developing lymphocytes.
 - Clonal deletion by ubiquitous self antigens
 - Clonal inactivation by tissue-specific antigens presented in the absence of co-stimulatory signals
Peripheral T cell Tolerance Mechanisms

- **Immunological Ignorance**: Very few self proteins contain peptides that are presented by a given MHC molecule at a level sufficient for T cell activation. Autoreactive T cells are present but normally not activated.
- **Suppressor or regulatory T cells**: mediate active suppression of autoreactive cells

Peripheral T cell Tolerance Mechanisms

- **Immunologically privileged sites**: no lymphatic drainage or non-vascularized areas; presence of immunosuppressive factors & FasL

Peripheral B cell Tolerance Mechanisms

- **Contact with soluble antigens**:
 - downregulation of surface IgM, inhibition of signaling → anergic cells
 - Fas-mediated apoptosis of anergic B cell following secondary encounter with CD4 T cell
Peripheral B cell Tolerance Mechanisms

• Contact with soluble antigens
 – Apoptosis of autoreactive B cells generated by somatic hypermutation in germinal centers

Peripheral B cell Tolerance Mechanisms

• Lack of T helper cell signals:
 – anergy
 – inhibited migration into follicles & apoptosis in T cell areas of lymph tissue
Loss of Self Tolerance

- Most self peptides are presented at levels too low to engage effector T cells whereas those presented at high levels induce clonal deletion or anergy.
- Autoimmunity arises most frequently to tissue-specific antigens with only certain MHC molecules that present the peptide at an intermediate level recognized by T cells without inducing tolerance.

MHC Association with Autoimmune Disease

- The level of autoantigenic peptide presented is determined by polymorphic residues in MHC molecules that govern the affinity of peptide binding.
- Autoimmune diseases are associated with particular MHC genotypes.
MHC Association with Autoimmune Disease

• Only a few peptides can act as autoantigens so there are a relatively few autoimmune syndromes.
• Individuals with a particular autoimmune disease tend to recognize the same antigens with the same MHC.

Fig. 13.4
Type I Diabetes association with HLA genotype

Mechanisms for Activation of Autoreactive Lymphocytes

• **Infectious triggers**:
 – stimulation of co-stimulatory signals, inappropriate MHC II expression, or cytokines
 – Molecular mimicry (cross-reaction)
 – Release of sequestered antigens
 – T cell bypass (pathogen binding to self protein/provision of carrier T cell epitope)
Mechanisms for Activation of Autoreactive Lymphocytes

- Infectious triggers:
 - Superantigen activity/polyclonal activation
Organ-specific Autoimmune diseases

- Antigens and autoimmunity restricted to specific organs in the body
 - Type I diabetes
 - Goodpasture’s syndrome
 - Multiple sclerosis
 - Grave’s disease
 - Hashimoto’s thyroiditis
 - Myasthenia gravis

Systemic Autoimmune Disease

- Antigens and autoimmunity are distributed in many tissues (systemic)
 - Rheumatoid arthritis
 - Systemic lupus erythematosus
 - Scleroderma
 - Primary Sjogren’s syndrome
 - Polymyositis
Determinant spreading