Todd Eisworth

 

Publications

Papers

 [1] Todd Eisworth and Judith Roitman, CH with no Ostaszewski spaces, Trans. Amer. Math. Soc. 351 (1999), no. 7, 2675-2693.

 [2] Todd Eisworth, Selective ultrafilters and $\omega\rightarrow(\omega)^\omega$, Proc. Amer. Math. Soc. 127 (1999), no. 10, 3067-3071.

 [3] Todd Eisworth, CH and first countable, countably compact spaces, Topology Appl. 109 (2001), no. 1, 55-73.

 [4] Todd Eisworth, Near coherence and filter games, Arch. Math. Logic 40 (2001), no. 3, 234-242.

 [5] Todd Eisworth, On countably compact spaces satisfying wD hereditarily, Topology Proc. 24 (1999)  Spring, 143-151.

 [6] Todd Eisworth and Peter Nyikos, Recent applications of totally proper forcing, Topology Proc. 23 (1998) Spring 339-348.

 [7] Todd Eisworth, Forcing and stable ordered-union ultrafilters. J. Symbolic Logic 67 (2002), no. 1, 449--464.

 [8] Todd Eisworth, PFA and perfect pre--images of $\omega_1$, Topology Appl. 125 (2002), no. 2, 263-278.

 [9] T. Eisworth and P. Nyikos and S. Shelah, Gently killing S-spaces, Israel J. Math. 136 (2003), 189-220.

[10] Todd Eisworth, Totally proper forcing and the Moore-Mrowka problem, Fund. Math. 177 (2003), no. 2, 121-136.

[11] Todd Eisworth, A note on Jonsson cardinals, Topology Proc. 27 (2003), no. 1, 173-178.

[12] Todd Eisworth, On iterated forcing for successors of regular cardinals, Fund. Math. 179 (2003) no. 3, 249-266.  

[13] Z. Balogh, T. Eisworth, G. Gruenhage, O. Pavlov, P. Szeptycki, Uniformization and anti-uniformization properties of ladder systems, Fund. Math. 181 (2004), 189-213.

[14] T. Eisworth and S. Shelah, Successors of singular cardinals and coloring theorems I, Arch. Math. Logic 44 (2005) no. 5, 597-618.

[15] T. Eisworth and P. Nyikos, First countable, countably compact spaces and the Continuum Hypothesis, Trans. Amer. Math. Soc. 357 (2005), 4329-4347.

[16] T. Eisworth, On ideals related to I[λ], Notre Dame Journal of Formal Logic 46 (2005) no. 3, 301-307.

[17] Todd Eisworth, Countable compactness, hereditary π-character, and the Continuum HypothesisTopology Appl. 153 (2006), no. 18, 3572--3597.

[18] Todd Eisworth, Elementary submodels and separable monotonically normal compacta, Topology Proceedings 30 No. 2 (2006),  431-443.

[19] Todd Eisworth, A note on strong negative partition relations, Fund. Math., 202 (2009), 97-123.

[20] T. Eisworth and P. Nyikos, Antidiamond principles and topological applications, Trans. Amer. Math. Soc. 361 (2009), 5695-5719.

[21] T. Eisworth and S. Shelah, Successors of singular cardinals and coloring theorems II, J. Symbolic Logic 74 No. 4 (2009), 1287-1309.

[22] Todd Eisworth, Club guessing, stationary reflection, and coloring theorems, Annals of Pure and Applied Logic 161 (2010) 1216-1243.

[23] Todd Eisworth, Simultaneous reflection and impossible ideals, J. Symbolic Logic 77 No. 4 (2012), 1325-1338.

[24] Todd Eisworth, Getting more colors I, J. Symbolic Logic 78 No. 1 (2013), 1-16.

[25] Todd Eisworth, Getting more colors II, J. Symbolic Logic 78 No. 1 (2013), 17-38.

 [26] Todd Eisworth, On idealized versions of Pr1, submitted to Archive for Mathematical Logic

 

Book Chapters

[1] Todd Eisworth, Successors of Singular CardinalsHandbook of Set Theory, Matthew Foreman and Akihiro Kanamori eds., Chapter 15 1229-1350, Springer,  2010. ISBN 978-1-4020-4843-2

 

[2] Todd Eisworth, On D-spaces, Open Problems in Topology II, Elliott Pearl ed., Chapter 1 129-134, Elsevier Publishing, Amsterdam, The Netherlands, 2007.  ISBN 0-444-52208-5

 

[3] Todd Eisworth, Justin Tatch Moore, and David Milovich, Iterated forcing and the Continuum Hypothesis,  Appalachian Set Theory: 2006-2012, James Cummings and Ernest Schimmerling   eds., Chapter 7  207-244,  Cambridge University Press (London Mathematical Society Lecture Note Series v. 406)  2013.  ISBN:9781107608504

 

Other

[1] Todd Eisworth,  review of  Mathematicians: An outer view of the inner world.  Notices Amer. Math. Soc. 57 (2010)  no. 7, 861-863.