Do as many problems as possible. Passing or failing will be determined by your 8 best solutions (no part marks from any remaining partial solutions). If any notation or terminology is unfamiliar, please ask.

1. Let $X = \bigcup \{X_i : i \in \omega\}$ be a compact Hausdorff space with countable Suslin number. Suppose that each X_i is a metrizable dense subspace of X. Prove that X is metrizable.

2. Let Y and Z be normal subspaces of a Hausdorff space X. Suppose that $Y \times Z$ is normal. Prove that $Y \cap Z$ is normal.

3. Prove that every countable completely metrizable space has a dense set of isolated points.

4. Let f be a continuous mapping of the space \mathbb{P} of irrational numbers with the usual topology onto a pseudocompact space Y. Is Y metrizable? Explain.

5. Is the space ω_1 with the order topology homeomorphic to a subspace of $\beta\mathbb{Q}$? Explain.

6. Suppose that X is regular and that $(\mathcal{U}_n)_{n \in \omega}$ is a sequence of open covers such that each finite open cover of X is refined by some \mathcal{U}_n. Prove that X is metrizable.

7. Prove that every paracompact space with a uniform base is metrizable.

8. Suppose that $X = Y \cup Z$ and that Y is a dense set of isolated points in X and Z is closed discrete in X. Prove that the following are equivalent.
 (a) The points of Z can be separated by a family of disjoint open sets.
 (b) Every open cover of X has a disjoint refinement.
 (c) X is paracompact.

9. Suppose that $X = \{x_\alpha : \alpha \in \omega_1\} \subseteq \mathbb{R}$ is a 1-1 enumeration of a set of real numbers. Consider the topology on X obtained by refining the usual subspace topology by declaring sets of the form $\{x_\alpha : \alpha < \beta\}$ open for each $\beta < \omega_1$. Prove or disprove each of the following:
 (a) X is separable.
 (b) X is Lindelöf.
 (c) X is Hausdorff.
 (d) X is regular.

10. Give an example of a nonmetrizable Tychonoff space whose topology is generated by a symmetric. Make sure to prove it has the relevant properties.