A NOTE ON JÓNSSON CARDINALS

TODD EISWORTH

Abstract. We use elementary submodels to prove a few facts about Jónsson cardinals.

Definition 1. A cardinal λ is a Jónsson cardinal if $\lambda \rightarrow [\lambda]^{\lambda}_\lambda$. This means that for any function $f : [\lambda]^{\lambda_\lambda} \rightarrow \lambda$, there is $H \in [\lambda]^{\lambda_\lambda}$ such that the range of $f \upharpoonright [H]^{\lambda_\lambda}$ is a proper subset of λ.

Jónsson cardinals have been extensively studied in the literature. Kanamori’s book [2] has an excellent survey of what is known and how Jónsson cardinals are related to large cardinals.

Proposition 2 (Folklore). A cardinal λ is a Jónsson cardinal if and only if for every large enough regular χ and every $x \in H(\chi)$, we can find $M \prec H(\chi)$ such that

- $\{\lambda, x\} \in M$
- $|M \cap \lambda| = \lambda$
- $\lambda \not\subseteq M$

We open this paper with an application of Jónsson cardinals to topology. Recall that if $M \prec H(\chi)$ and $X \in M$ is a topological space, then X_M is the topological space with underlying set $M \cap X$ and base $\{U \cap M : U \subseteq M, U$ open in $X\}$.

Theorem 1. The following statements are equivalent:

1. There is a Jónsson cardinal.
2. There are a topological space X and $M \prec H(\chi)$ (for χ some large regular cardinal) with $X \in M$ such that X_M is homeomorphic to X but $X \neq X_M$.

Proof. The proof that (1) implies (2) is due to Junqueira and Tall [1]; it suffices to observe that if λ is a Jónsson cardinal, then the discrete space of cardinality λ works — we just take M witnessing that λ is Jónsson.

The proof that (2) implies (1) is more involved; we show that (2) implies that at least one of $|X|$ and $w(X)$ is a Jónsson cardinal.

Suppose that we are given $M \prec H(\chi)$ and $X \in M$ such that X_M is homeomorphic to X but not equal to X. Further suppose that $|X|$ is not a Jónsson cardinal.

Since X_M is homeomorphic to X, we know $|M \cap X| = |X_M| = |X|$. Also, $|X| \in M$ because X is. Since $|X|$ is not a Jónsson cardinal, we are forced to conclude that $|X| \subseteq M$, and hence $X \subseteq M$.

In M, let us fix a base $\{U_\alpha : \alpha < w(X)\}$ for the topology of X. The cardinal $w(X)$ is in M because X is. Now $\{U_\alpha : \alpha \in M \cap w(X)\}$ is a base for the topology of X_M. Since X_M and X are homeomorphic, we know $w(X_M) = w(X)$ and therefore
Putting all these facts together, we arrive at the conclusion that \(w(X) \) is Jónsson. \(\Box \)

Our next application of elementary submodels is to give a short proof of a result due independently to Tryba [6] and Woodin (unpublished).

Theorem 2. If \(\lambda \) is a Jónsson cardinal, then every stationary subset of \(\lambda \) reflects.

Lemma 3. Suppose \(M < H(\chi), \lambda \in M, |M \cap \lambda| = \lambda \), and \(\lambda \not< M \). If \(S \subseteq M \) is a stationary subset of \(\lambda \), then \(S \setminus M \) is stationary.

Proof. Suppose \(S \) and \(M \) are a counterexample. There is a closed unbounded set \(E \subseteq \lambda \) such that \(E \cap S \subseteq M \).

In \(M \), we can fix a partition of \(S \) into \(\lambda \) stationary subsets, i.e., there is a function \(f: S \to \lambda \) in \(M \) such that \(S_\alpha := f^{-1}(\{\alpha\}) \) is stationary for each \(\alpha < \lambda \).

Fix \(\alpha < \lambda \) such that \(\alpha \not< M \). Such \(S_\alpha \) is stationary, we know that \(E \cap S_\alpha \) is non-empty. Since \(S_\alpha \not< S \), we have \(E \cap S_\alpha \subseteq M \). Fix \(\beta \in E \cap S_\alpha \). Then since \(f \in M \) and \(\beta \in M \), \(\alpha = f(\beta) \) is in \(M \), a contradiction. \(\Box \)

Proof of Theorem 2. Let \(S \) be a stationary subset of \(\lambda \). We must produce \(\beta < \lambda \) such that \(S \cap \beta \) is stationary in \(\beta \).

Since \(\lambda \) is a Jónsson cardinal, we can find \(M < H(\chi) \) such that

- \(\{S, \lambda\} \in M \)
- \(|M \cap \lambda| = \lambda \)
- \(\lambda \not< M \)

By our lemma, we can find \(\delta \in S \setminus M \) such that \(\delta = \sup(M \cap \delta) \) (as the set \(\{\delta < \lambda : \delta = \sup(M \cap \delta)\} \) is club in \(\lambda \)). Let \(\beta_\delta = \min(M \cap \lambda \setminus \delta) \); clearly \(\delta < \beta_\delta \).

Claim 4. \(S \cap \beta_\delta \) is a stationary subset of \(\beta_\delta \).

Proof. The proof is by contradiction. If this fails, then there is a closed unbounded \(C \subseteq \beta_\delta \) disjoint from \(S \). Since \(S \) and \(\beta_\delta \) are both in \(M \), we may assume that \(C \in M \).

Given \(\alpha < \delta \), we can find \(\beta \in M \) such that \(\alpha < \beta < \delta \) because \(\delta = \sup(M \cap \delta) \). Since \(M \models "C \text{ is unbounded in } \delta" \), we can find \(\gamma \in M \cap C \) such that \(\beta < \gamma \). By choice of \(\beta_\delta \), we see that \(\gamma < \delta \). Since \(\alpha \) was an arbitrary ordinal \(< \delta \), we have shown that \(\delta \) is a limit point of \(C \). As \(C \) is closed, we have \(\delta \in C \), a contradiction as \(C \cap S \) was supposed to be empty. \(\Box \)

The proof of Lemma 3 can be easily generalized to other ideals.

Lemma 5. Suppose \(M < H(\chi) \) with \(\lambda \in M \). Let \(I \subseteq M \) be an ideal on \(\lambda \) such that there is a function \(f: \lambda \to \lambda \) with \(f^{-1}(\{\alpha\}) \not< I \) for each \(\alpha < \lambda \). If \(\lambda \setminus M \subseteq I \), then \(\lambda \subseteq M \).

Proof. Without loss of generality, the function \(f \) is in \(M \). Given \(\alpha < \lambda \), the set \(f^{-1}(\{\alpha\}) \) is not in \(I \). Since \(\lambda \setminus M \subseteq I \), this means that there is \(\beta \in \lambda \setminus M \) with \(f(\beta) = \alpha \). Since \(f \) and \(\beta \) are in \(M \), \(\alpha \) must be in \(M \) as well. As \(\alpha < \lambda \) was arbitrary, we conclude \(\lambda \subseteq M \). \(\Box \)
We now exploit this lemma by connecting the question of whether the successor of a singular cardinal can be Jónsson to a question on whether a certain ideal possesses a weak form of saturation. This approach is implicit in much of Shelah’s work in [4]. We note that the question of whether the successor of a singular cardinal can be Jónsson is still very much an open question (see [5] for example).

For the remainder of the paper, assume that \(\lambda = \mu^+ \) for some singular cardinal \(\mu \), and we let \(S \) be a stationary subset of \(\lambda \setminus \mu \) such that \(\sup \{ cf(\delta) : \delta \in S \} < \mu \). We let \(C = \langle C_\delta : \delta \in S \rangle \) be such that \(C_\delta \) is club in \(\delta \) with order–type \(cf(\delta) \). For \(\delta \in S \), we define an ideal \(I_\delta \) of subsets of \(C_\delta \) by

\[
A \text{ is not in } I_\delta \iff (\forall \alpha \in \delta)(\forall \beta < \mu)(\exists \gamma \in nacc(C_\delta))[\gamma > \alpha \text{ and } cf(\gamma) > \beta].
\]

Here \(nacc(C_\delta) \) is the set of non–accumulation points of \(C_\delta \), i.e., those \(\alpha \in C_\delta \) such that \(\sup(\alpha \cap C_\delta) < \alpha \). It is not hard to see that \(I_\delta \) is an ideal of subsets of \(C_\delta \), and we let \(I = (I_\delta : \delta \in S) \).

Definition 6. The ideal \(id_\mu(C, I) \) is defined by putting \(A \in id_\mu(C, I) \) if and only if there is a closed unbounded \(E \subseteq \lambda \) such that for every \(\delta \in S \cap E \), \(A \cap E \cap C_\delta \in I_\delta \).

Said another way, if \(A \notin id_\mu(C, I) \), then for every club \(E \subseteq \lambda \) there is \(\delta \in S \cap E \) such that \(A \cap E \cap nacc(C_\delta) \) is large in the sense that it is not in the ideal \(I_\delta \). Shelah’s work in [4] shows that in many cases the ideal \(id_\mu(C, I) \) is non–trivial — given \(S \), we can find \(C \) such that \(\lambda \notin id_\mu(C, I) \).

The proposition we state next is new, although it lurks in the background throughout much of Chapter IV of [3]. It ties together many of the proofs there.

Proposition 7. Let \(\lambda = \mu^+ \) where \(\mu \) is singular, and let \(S \) be a stationary subset of \(S_\kappa^\lambda \) for some \(\kappa < \lambda \). Let \(M < H(\chi) \) with \(\{ \lambda, S, C \} \in M \), and assume \(|M \cap \lambda| = \lambda \). Then \(\lambda \setminus M \in id_\mu(C, I) \).

Proof. Suppose this is not the case. Let \(E = \{ \delta < \lambda : \delta = \sup(M \cap \delta) \} \); since \(|M \cap \lambda| = \lambda \) we know that \(E \) is closed unbounded in \(\lambda \). Since we assume \(\lambda \setminus M \notin id_\mu(C, I) \), there is a \(\delta \in S \cap E \) with \((\lambda \setminus M) \cap E \cap C_\delta \notin I_\delta \). This means that we can find points in \(nacc(C_\delta) \cap E \) with cofinality arbitrarily large beneath \(\mu \) that are not in \(M \).

Note that we have no guarantee that \(\delta \) and \(C_\delta \) are in \(M \); to get around this, let us define \(\beta_\delta := \min(M \cap \lambda \setminus \delta) \). (So \(\beta_\delta = \delta \) if \(\delta \in M \).) In \(M \), we can fix \(C \) such that \(C \) is club in \(\beta_\delta \) and \(otp(C) = cf(\beta_\delta) \). Note that since \(S \subseteq \lambda \setminus \mu \), we know that \(\beta_\delta \) is singular and \(cf(\beta_\delta) < \mu \). We define

\[
C^* = \bigcup_{\beta \in C \cap S} C_\beta.
\]

Since \(C \) and \(S \) are in \(M \), the set \(C^* \) is in \(M \) as well. Also, note that \(C_\delta \) is a subset of \(C^* \). By our assumption on \(S \), there is some \(\gamma < \mu \) such that \(|C_\delta| < \gamma \) for each \(\delta \in S \). This together with the fact that \(|C| < \mu \) is enough to guarantee that \(|C^*| < \mu \).

Since \((\lambda \setminus M) \cap E \cap C_\delta \notin I_\delta \), there is \(\alpha \in E \cap nacc(C_\delta) \) such that \(cf(\alpha) > |C^*| \) and \(\alpha \notin M \). Since \(cf(\alpha) > |C^*| \), we know that \(\alpha \in nacc(C^*) \) as well. This means that there is a \(\beta \in M \cap \lambda \) such that

\[
\sup(C^* \cap \alpha) < \beta < \alpha.
\]

This implies that \(\alpha \) can be defined as the least member of \(C^* \) that is above \(\beta \); since \(C^* \) and \(\beta \) are in \(M \), we conclude \(\alpha \in M \). This is a contradiction of our choice of \(\alpha \). \qed
We can now draw some conclusions about the possibility of the successor of a singular cardinal being Jónsson. For example, if $\lambda = \mu^+$ and $M \prec H(\chi)$ satisfies

- $|M \cap \lambda| = \lambda$, and
- $\lambda \notin M$,

then M will contain a stationary set $S \subseteq \lambda$ and an S–club system \bar{C} such that the ideal $\text{id}_p(\bar{C}, \bar{I})$ is non–trivial. Since $\text{id}_p(\bar{C}, \bar{I}) \in M$ and $\lambda \setminus M \in \text{id}_p(\bar{C}, \bar{I})$, Lemma 5 tells us that whenever we partition λ into λ sets, at least one of the pieces of the partition must be in $\text{id}_p(\bar{C}, \bar{I})$. The power of this lies in our ability to prove that in certain situations, it is possible to partition λ into λ disjoint sets, none of which are in $\text{id}_p(\bar{C}, \bar{I})$ and thus show that λ is not a Jónsson cardinal — this is the essence of many results in Shelah’s book [3].

References

5. Saharon Shelah, *On what I do not understand (and have something to say)*, Fundamenta Mathematicae **166** (2000), 1–82.

Department of Mathematics, University of Northern Iowa, Cedar Falls, IA, 50614

E-mail address: eisworth@math.uni.edu