Lecture 1: Introduction to D-spaces

Definition 1. A space X is a D–space if for every neighborhood assignment $x \mapsto U_x$ (so U_x is an open neighborhood of x) there is a closed discrete $D \subseteq X$ such that

$$X \subseteq \bigcup_{d \in D} U_d.$$

Clearly every compact space is a D–space.

Theorem 1. Metrizable spaces are D–spaces.

Let X be a metrizable space. Our proof of this theorem does not use the full strength of metrizability; rather, we make use of the following property of metrizable spaces:

Claim 2. Let τ be the topology on X. Then there is a function F with domain $\tau \times \omega$ such that

1. $F(U, n)$ is a closed subset of U
2. $U = \bigcup_{n \in \omega} F(U, n)$
3. $F(U, n) \subseteq F(U, n + 1)$
4. If $U \subseteq V$, then $F(U, n) \subseteq F(U, n + 1)$.

Proof. Given U an open subset of X and $n < \omega$, define

$$F(U, n) := \{x \in X : B(x, 1/n) \subseteq U\},$$

where $B(x, 1/n)$ is the open ball of radius $1/n$ centered at x. It is easy to verify that F has all the required properties. \qed

Given a neighborhood assignment $x \mapsto U_x$ for X, one can think of the function F as a way to organize our space into “layers”:

For $n < \omega$, define

$$X_n := \{x \in X : x \in F(U_x, n)\}.$$

The “layer” analogy holds, because it is clear that $X_n \subseteq X_{n+1}$ and $\bigcup_{n<\omega} X_n = X$.

Why are these layers helpful? They give us a way of making sure that points stay “spread apart” which is quite important given that we are trying to build closed discrete subsets. The idea is that if $x \in F(U, n)$ and $y \notin U_x$, then $d(x, y) \geq 1/n$; this is immediate from the definitions involved.

Now suppose we are given $n < \omega$. We show that there is a closed discrete $D_n \subseteq X_n$ such that $X_n \subseteq \bigcup_{x \in D_n} U_x$. Once we do this, we show how to improve this to show that X is a D–space.

We define a sequence $\langle x_\alpha : \alpha < \gamma \rangle$ (for some γ) as follows:

Stage 0:

Ask if $X_\gamma = \emptyset$. If so, we set $\gamma = 0$ and stop the construction as there is nothing to be done. If not, then let $x_0 \in X_\gamma$ be arbitrary.

Stage $\alpha > 0$:
Given \(\langle x_\beta : \beta < \alpha \rangle \), we ask if \(X_n \) is covered by \(\bigcup_{\beta < \alpha} U_{x_\beta} \). If so, we set \(\gamma = \alpha \) and stop the construction. If not, we let \(x_\alpha \) be some element of \(X_n \setminus \bigcup_{\beta < \alpha} U_{x_\beta} \), and the induction continues.

Clearly the above construction terminates at some \(\gamma \leq |X_n| \), and we let \(D_n = \{ x_\alpha : \alpha < \gamma \} \) be the sequence produced.

Let us define
\[
U := \bigcup_{\alpha < \gamma} U_{x_\alpha}.
\]
Our construction guarantees that \(X_n \subseteq U \), as we keep the induction going until this is accomplished. So why is \(D_n = \{ x_\alpha : \alpha < \gamma \} \) closed and discrete?

This is trivial if we are willing to use the full power of metrizability – \(D_n \) is uniformly discrete. However, we are committed to getting a proof to go through using only the properties of \(F \) enumerated in Claim 2, so we must work a little harder.

Claim 3. Given \(z \in X \), there is an open neighborhood \(V \) of \(z \) such that \(|V \cap D_n| \leq 1 \).

Proof. Let \(z \in X \) be given. We start by noting that since \(x_\alpha \in F(U_{x_\alpha}, n) \) for each \(\alpha < \gamma \), we have
\[
D \subseteq F\left(\bigcup_{\alpha < \gamma} U_{x_\alpha}, n \right) = F(U, n).
\]
This means that if \(z \notin F(U, n) \), then \(X \setminus F(U, n) \) is an open set containing \(z \) that is disjoint to \(D_n \). Thus, we may assume that \(z \in F(U, n) \). In particular, \(z \in U \) and so there is a least \(\alpha < \gamma \) such that \(z \in U_{x_\alpha} \).

By construction,
\[
\{ x_\beta : \beta < \alpha \} \subseteq F\left(\bigcup_{\beta < \alpha} U_{x_\beta}, n \right).
\]
This latter set is closed, hence \(X \setminus F(\bigcup_{\beta < \alpha} U_{x_\beta}, n) \) is an open neighborhood of \(z \) disjoint to \(\{ x_\beta : \beta < \alpha \} \).

For \(\beta > \alpha \), we have made sure that \(x_\beta \notin U_{x_\alpha} \), and so \(U_{x_\alpha} \) is an open neighborhood of \(z \) disjoint to \(\{ x_\beta : \beta > \alpha \} \). Thus
\[
V := U_{x_\alpha} \cap \left(X \setminus F\left(\bigcup_{\beta < \alpha} U_{x_\beta}, n \right) \right)
\]
is an open neighborhood of \(z \) meeting \(D_n \) at most one point (namely \(x_\alpha \)). This implies immediately that \(D_n \) is closed and discrete. (Check this!) We are almost done; the first of the questions below asks about taking the above argument and “iterating it” to finish our proof.

Question: Can you finish the proof that metrizable spaces are \(D \)–spaces? Verify that all we used are the properties of \(F(U, n) \) outlined in Claim 2.

Question: Is the Sorgenfrey line a \(D \)–space? Is the Sorgenfrey line “semi-stratifiable”? (i.e., can you define a function \(F \) as in Claim 2 for the Sorgenfrey line?)

Question: Suppose \(Y \subseteq X \) and \(X \) is a \(D \)–space. Is \(Y \) a \(D \)–space? What if \(Y \) is closed? open? \(G_\delta \), \(F_\sigma \)?

Question: Suppose \(f : X \to Y \) is a closed mapping. If \(X \) is a \(D \)–space, is \(Y \)? If \(Y \) is a \(D \)–space, is \(X \)? If not, can you come up with some additional conditions on \(f \) that will give you a theorem?