A.) Locate and calculate the maximum bending stress

B.) Calculate maximum deflection at point P

A.) Assume load P is centered along the longitudinal axis of the beam (i.e., no torsion), and the body and load are static.

Free Body Diagram

\[\sum F_x = 0 \]
\[\sum F_y = 0 = V - P \quad \therefore V = P = 50.0 \text{ lbs} \]
\[\sum M_A = 0 = M - (Q)P \quad \therefore M = (Q)P = 7,000'' \times 50.0 \text{ lbs} = 350 \text{ in-lbs} \]

Shear and Bending Moment Diagrams

Shear:

\[V = 50.0 \text{ lbs} \]

Bending Moment:

\[M = -350 \text{ in-lbs} \]

Moment @ B is zero.
Maximum Bending Stress:

\[\sigma = \frac{Mc}{I} \quad c = 0.15'' = \text{max distance to neutral axis} \]

\[I = \frac{bh^3}{12} - \frac{bh_1 h_1}{12} = \frac{1}{12} - \frac{0.5bh_1}{12} \]

\[I = 0.0345 \text{in}^4 \]

Since bending stress is directly proportional to the magnitude of the bending moment \(M \), the maximum bending stress will be at point \(A \) on the top (tensile) and bottom (compressive) edges of the beam.

\[\sigma_{\text{max}} = \frac{Mc}{I} = \frac{(350 \text{ in} \cdot \text{lb}) (0.5'')} {0.0345 \text{in}^4} = 5070 \text{ psi} \]

B. From beam tables, we have the equation for deflection of a cantilevered beam:

\[S_{\text{max}} = \frac{PL^3}{3EI} \]

\[P = 50,0 \text{ lb} \]
\[L = 7.000'' \]
\[E = 29 \text{ Mpsi} \leftarrow \text{from table in Norton, 2nd Ed.} \]
\[I = 0.0354 \text{in}^4 \]

\[S_{\text{max}} = \frac{(50.0 \text{ lb}) (7.000)^3} {3 (29 \times 10^6 \text{psi}) (0.0354 \text{in}^4)} = 0.00557 \text{in} \]