New Rule of Inference: The Principle of Induction

\[P(a) \text{ is true} \]
For all integers \(k \geq a \), if \(P(k) \) is true, then \(P(k + 1) \) is true.
\[\therefore \text{For all integers } n \geq a, \ P(n) \text{ is true.} \]

Usage:
- The letter “a” represents some fixed integer.
- The letters “k” and “n” represent variables whose domain \(D \) is the set of all integers greater than or equal to “a”.
- The symbol \(P(n) \) represents a predicate whose domain is the set \(D \).

This new rule of inference will be used to prove statements of the form

Statement \(S \): “For all integers \(n \geq a \), \(P(n) \) is true.”

Strategy for using the principle of induction

Preliminary work:
- Identify the number playing the role of “a”. (Introduce it.)
- Identify the predicate \(P(n) \). (Introduce it in a sentence.)
- Figure out what the expressions for \(P(a) \), \(P(k) \) and \(P(k + 1) \) look like. (Write them down.)

Build a proof of Statement \(S \) using the following structure:

Proof of Statement \(S \):
- Basis Step: Prove that \(P(a) \) is true.
 (1) The proof will begin somehow.
 *
 * A bunch of steps may be involved. Usually a computation.
 *
 (xx) \(P(a) \) is true.
- Inductive Step: Prove that for all integers \(k \geq a \), if \(P(k) \) is true, then \(P(k + 1) \) is true.
 (1) Suppose that \(k \) is an integer such that \(k \geq a \) and that \(P(k) \) is true.
 *
 * a bunch of steps may be involved
 *
 (xx) \(P(k + 1) \) is true. (some justification goes here.)
- Conclusion: Therefore, for all integers \(n \geq a \), \(P(n) \) is true. (by the principle of induction)

End of Proof of Statement \(S \)