Sign in
Pick up graded work
 - Quiz 7 solutions are printed on back
 - Current scores & grade are on Blackboard

Friday (March 24) is Exam 3
 - Bring your ID

Continuing example from yesterday

\[f(x) = 20 - 4x - \frac{250}{x^2} \]
Find all absolute extremes on the interval \((0, \infty)\)

Find critical numbers for the function.

Strategy: Find partition numbers for \(f'(x)\)
Then find critical numbers for \(f(x)\).
To find partition numbers for \(f'(x) \)

Need to find \(f'(x) \)

Rewrite \(f(x) \) in more convenient form

\[
\begin{align*}
\text{rewrite } f(x) & = 20 - 4x - \frac{250}{x^2} \\
\text{rewrite } f(x) & = 20 - 4x - 250x^{-2}
\end{align*}
\]

\[
\text{derivative } f'(x) = \frac{d}{dx} \left(20 - 4x - 250x^{-2}\right) = \left(\frac{d}{dx}20\right) - 4\left(\frac{d}{dx}x\right) - 250\left(\frac{d}{dx}x^{-2}\right)
\]

\[
= (0) - 4(1) - 250(-2)x^{-3-1} = -4 + 500x^{-3}
\]

\[
= -4 + 500 \cdot \left(\frac{1}{x^3}\right)
\]

\[
f'(x) = -4 + \frac{500}{x^3}
\]
Partition numbers for \(f'(x) = -4 + \frac{500}{x^3} \)

- Notice \(f'(0) \) DNE so \(x=0 \) is not a partition number.
- Look for \(x \)-values that cause \(f'(x) = 0 \)

\[
0 = -4 + \frac{500}{x^3}
\]

\[
4 = \frac{500}{x^3}
\]

\[
4x^3 = 500 \\
x^3 = \frac{500}{4} = 125
\]

\[
x = 5
\]

\[
f'(5) = 0 \quad \text{so} \quad x = 5 \text{ is a partition number for } f(x)
\]
Find the critical numbers for \(f(x) \)

Observe \(f(0) = 20 - 4(0) - \frac{250}{(0)^2} \) DNE

but \(f(5) = 20 - 4(5) - \frac{250}{5^2} \) this does exist

So \(x = 5 \) is the only critical number for \(f(x) \).

If there is an absolute max or min in \(f(x) \),

it can only occur at \(x = 5 \).

Study sign behavior of \(f'(x) \) using a sign chart for \(f'(x) \)
Sign chart for $f'(x)$

- $f'(x)$ negative
- $f'(x)$ DNE
- $f'(x)$ positive
- $f'(x)$ equals 0
- $f'(x)$ negative

Sample $x = -1$

$x = 0$
- Partition number for f'
- Not critical number for f

Sample $x = 1$

$x = 5$
- Partition number for f'
- Critical number for f

Sample $x = 10$

$f'(-1) = -4 + \frac{500}{(-1)^3} = -4 + \frac{500}{-1} = -4 - 500 = \text{neg}$

$f'(1) = -4 + \frac{500}{(1)^3} = -4 + \frac{500}{1} = -4 + 500 = \text{pos}$

$f'(10) = -4 + \frac{500}{(10)^3} = -4 + \frac{500}{1000} = -4 + \frac{1}{2} = \text{neg}$
Notice: f decreasing on $(-\infty, 0)$ because f' neg
then f increasing on $(0, 5)$ because f' pos
f decreasing on $(5, \infty)$ because f' neg.

f has a max at $x=5$ (local max)
No min at $x=0$ because $x=0$ is not a critical number.
But in fact we can see that the behavior of f on the interval $(0, \infty)$ will mean that there is an **absolute max** at $x=5$.

(Absolute max for the interval $x=5$)

The absolute max is the y-value

\[
f(5) = 20 - 4(5) - \frac{250}{(5)^2}
\]

\[
= 20 - 20 - \frac{250}{25}
\]

\[
= -10
\]

Absolute max for the interval $(0, \infty)$ is $y = -10$ (it occurs at $x=5$)

There is no absolute min on the interval $(0, \infty)$
Section 4.6 Optimization

Optimization problems are Absolute Max/min problems

Possible complications

- May be presented as word problems.
- The function is usually not given. You have to figure out the function.
- You have to figure out the domain.
- Once you figure out the domain, you may see that it is not a closed interval.
- There may be more than one variable.
Example (similar to suggested exercises 4.6 #9, 17)

Find positive numbers \(x, y \) such that

- the sum \(2x + y = 900 \)
- the product is maximized

Solution

Name the two equations

Equation 1 Sum: \(2x + y = 900 \)

Equation 2 Product \(xy = A \)

Goal: find \(x, y \) that maximize the value of \(A \).

Use 1st equation to eliminate one of the variables.

Solve equation 1 for \(y \) in terms of \(x \)

\[2x + y = 900 \]
\[y = 900 - 2x \] new equation 1
Substitute Equation 1 into Equation 2

Equation 2

\[A = xy \]
\[= X(900-2x) \]
\[= X \cdot 2(450-x) \]
\[A = 2X(450-x) \]

Factored form

\[A = 900X - 2X^2 \]

Standard form

This is an equation involving \(A + X \).
It is solved for \(A \) in terms of \(X \).
So it could be thought of as \("A" \) as a function of \(X \).

\[A(X) = 900X - 2X^2 = 2X(450-X) \]
What is the domain of the function \(A(x) = 900x - 2x^2 \)?

We are told that \(x > 0 \)

But we are also told that \(y > 0 \)

we know \(y = 900 - 2x \)

Must have \(x < 450 \) for \(y \) to be \(> 0 \).

So domain is \(0 < x < 450 \)
Goal: Maximize the function $A(x) = 900x - 2x^2$

on the interval $0 < x < 450$

Find critical numbers.

Find $A'(x)$

Set $A'(x) = 0$

Solve for x

$A'(x) = 900(1) - 2(2x)$

$A'(x) = 900 - 4x$

$0 = A'(x) = 900 - 4x$

$4x = 900$

$x = 225$

This corresponds to the peak of the upside down parabola.

So must be a max at $x = 225$.

The corresponding y-value is $y = 900(225) - 2(225)^2 = 900 - 450 = 450$.
Conclusion

The best values are \(X = 225, \ y = 450 \).

The resulting product is

\[
X \cdot y = \frac{225}{450} = \text{by number}
\]